推荐文章

    Please wait a minute...
    选择: 显示/隐藏图片
    1. 无证书签名方案的分析与改进
    赵洪, 喻书涵, 韩妍妍, 李兆斌
    《计算机应用》唯一官方网站    2023, 43 (1): 147-153.   DOI: 10.11772/j.issn.1001-9081.2021111919
    摘要64)   HTML1)    PDF (686KB)(36)    收藏

    针对汤永利等提出的9种无证书签名方案(汤永利,王菲菲,叶青,等.改进的可证明安全无证书签名方案.北京邮电大学学报,2016,39(1):112-116),首先使用线性化方程分析方法,发现所有方案中公钥之间存在线性关系,利用此缺陷完成对所有方案的签名伪造攻击;其次,为打破公钥之间的线性关系,使用改造哈希函数参数的方法改进方案,并在随机预言机模型下证明了改进方案的安全性;然后,提出一种无证书签名方案中的公钥构造格式,通过该格式构造出的签名方案无法被敌手进行公钥替换攻击;最后,通过仿真对改进方案与现有的无证书签名方案进行效率比较。实验结果表明,改进方案在提高安全性的同时未降低计算效率

    图表 | 参考文献 | 相关文章 | 多维度评价
    2. 事件抽取综述
    马春明, 李秀红, 李哲, 王惠茹, 杨丹
    《计算机应用》唯一官方网站    2022, 42 (10): 2975-2989.   DOI: 10.11772/j.issn.1001-9081.2021081542
    摘要367)   HTML71)    PDF (3054KB)(268)    收藏

    将用户感兴趣的事件从非结构化信息中提取出来,然后以结构化的方式展示给用户,这就是事件抽取。事件抽取在信息收集、信息检索、文档合成、信息问答等方面有着广泛应用。从全局出发,事件抽取算法可以分为基于模式匹配的算法、触发词法、基于本体的算法以及前沿联合模型方法这四类。在研究过程中根据相关需求可使用不同评价方法和数据集,而不同的事件表示方法也与事件抽取研究有一定联系;以任务类型区分,元事件抽取和主题事件抽取是事件抽取的两大基本任务。其中,元事件抽取有基于模式匹配、基于机器学习和基于神经网络这三种方式,而主题事件抽取有基于事件框架和基于本体两种方式。事件抽取研究在中英等单语言上均已取得了优秀成果,而跨语言事件抽取依然面临着许多问题。最后,总结了事件抽取的相关工作并提出未来研究方向,以期为后续研究提供参考。

    图表 | 参考文献 | 相关文章 | 多维度评价
    3. 基于节点-属性二部图的网络表示学习模型
    周乐, 代婷婷, 李淳, 谢军, 楚博策, 李峰, 张君毅, 刘峤
    《计算机应用》唯一官方网站    2022, 42 (8): 2311-2318.   DOI: 10.11772/j.issn.1001-9081.2021060972
    摘要456)   HTML118)    PDF (843KB)(360)    收藏

    在图结构数据上开展推理计算是一项重大的任务,该任务的主要挑战是如何表示图结构知识使机器可以快速理解并利用图数据。对比现有表示学习模型发现,基于随机游走方法的表示学习模型容易忽略属性对节点关联关系的特殊作用,因此提出一种基于节点邻接关系与属性关联关系的混合随机游走方法。首先通过邻接节点间的共同属性分布计算属性权重,并获取节点到每个属性的采样概率;然后分别从邻接节点与含有共有属性的非邻接节点中提取网络信息;最后构建基于节点-属性二部图的网络表示学习模型,并通过上述采样序列学习得到节点向量表达。在Flickr、BlogCatalog、Cora公开数据集上,用所提模型得到的节点向量表达进行节点分类的Micro-F1平均准确率为89.38%,比GraphRNA(Graph Recurrent Networks with Attributed random walks)高出了2.02个百分点,比经典工作DeepWalk高出了21.12个百分点;同时,对比不同随机游走方法发现,提高对节点关联有促进作用的属性的采样概率可以增加采样序列所含信息。

    图表 | 参考文献 | 相关文章 | 多维度评价
    4. 基于注意力机制的轻量型人体姿态估计
    李坤, 侯庆
    《计算机应用》唯一官方网站    2022, 42 (8): 2407-2414.   DOI: 10.11772/j.issn.1001-9081.2021061103
    摘要243)   HTML29)    PDF (876KB)(177)    收藏

    针对高分辨率人体姿态估计网络存在参数量大、运算复杂度高等问题,提出一种基于高分辨率网络(HRNet)的轻量型沙漏坐标注意力网络(SCANet)用于人体姿态估计。首先引入沙漏(Sandglass)模块和坐标注意力(CoordAttention)模块;然后在此基础上构建了沙漏坐标注意力瓶颈(SCAneck)模块和沙漏坐标注意力基础 (SCAblock)模块两种轻量型模块,在降低模型参数量和运算复杂度的同时,获取特征图空间方向的长程依赖和精确位置信息。实验结果显示,在相同图像分辨率和环境配置的情况下,在COCO(Common Objects in COntext)校验集上,SCANet模型与HRNet模型相比参数量降低了52.6%,运算复杂度降低了60.6%;在MPII(Max Planck Institute for Informatics)校验集上,SCANet模型与HRNet模型相比参数量和运算复杂度分别降低了52.6%和61.1%;与常见的人体姿态估计网络如堆叠沙漏网络(Hourglass)、级联金字塔网络(CPN)和SimpleBaseline相比,SCANet模型在拥有更少的参数量与运算复杂度的情况下,仍能实现对人体关键点的高准确度预测。

    图表 | 参考文献 | 相关文章 | 多维度评价
    5. 分布式机器学习作业性能干扰分析与预测
    李洪亮, 张弄, 孙婷, 李想
    《计算机应用》唯一官方网站    2022, 42 (6): 1649-1655.   DOI: 10.11772/j.issn.1001-9081.2021061404
    摘要411)   HTML91)    PDF (1121KB)(379)    收藏

    通过分析分布式机器学习中作业性能干扰的问题,发现性能干扰是由于内存过载、带宽竞争等GPU资源分配不均导致的,为此设计并实现了快速预测作业间性能干扰的机制,该预测机制能够根据给定的GPU参数和作业类型自适应地预测作业干扰程度。首先,通过实验获取分布式机器学习作业运行时的GPU参数和干扰率,并分析出各类参数对性能干扰的影响;其次,依托多种预测技术建立GPU参数-干扰率模型进行作业干扰率误差分析;最后,建立自适应的作业干扰率预测算法,面向给定的设备环境和作业集合自动选择误差最小的预测模型,快速、准确地预测作业干扰率。选取5种常用的神经网络作业,在两种GPU设备上设计实验并进行结果分析。结果显示,所提出的自适应干扰预测(AIP)机制能够在不提供任何预先假设信息的前提下快速完成预测模型的选择和性能干扰预测,耗时在300 s以内,预测干扰率误差在2%~13%,可应用于作业调度和负载均衡等场景。

    图表 | 参考文献 | 相关文章 | 多维度评价
    6. 基于交叉层级数据共享的多任务模型
    陈颖, 于炯, 陈嘉颖, 杜旭升
    《计算机应用》唯一官方网站    2022, 42 (5): 1447-1454.   DOI: 10.11772/j.issn.1001-9081.2021030516
    摘要133)   HTML16)    PDF (1841KB)(73)    收藏

    针对多任务学习模型中相关度低的任务之间存在的负迁移现象和信息共享困难问题,提出了一种基于交叉层级数据共享的多任务模型。该模型关注细粒度的知识共享,且能保留浅层共享专家的记忆能力和深层特定任务专家的泛化能力。首先,统一多层级共享专家,以获取复杂相关任务间的公共知识;然后,将共享信息分别迁移到不同层级的特定任务专家之中,从而在上下层之间共享部分公共知识;最后,利用基于数据样本的门控网络自主选择不同任务所需信息,从而减轻样本依赖性对模型的不利影响。相较于多门控混合专家(MMOE)模型,所提模型在UCI census-income数据集上对两个任务的F1值分别提高了7.87个百分点和1.19个百分点;且在MovieLens数据集上的回归任务的均方误差(MSE)值降低到0.004 7,分类任务的AUC值提高到0.642。实验结果表明,所提出的模型适用于改善负迁移现象的影响,且能更高效地学习复杂相关任务之间的公共信息。

    图表 | 参考文献 | 相关文章 | 多维度评价
    7. 基于代码图像合成的Android恶意软件家族分类方法
    李默, 芦天亮, 谢子恒
    《计算机应用》唯一官方网站    2022, 42 (5): 1490-1499.   DOI: 10.11772/j.issn.1001-9081.2021030486
    摘要193)   HTML8)    PDF (3025KB)(78)    收藏

    代码图像化技术被提出后在Android恶意软件研究领域迅速普及。针对使用单个DEX文件转换而成的代码图像表征能力不足的问题,提出了一种基于代码图像合成的Android恶意软件家族分类方法。首先,将安装包中的DEX、XML与反编译生成的JAR文件进行灰度图像化处理,并使用Bilinear插值算法来放缩处理不同尺寸的灰度图像,然后将三张灰度图合成为一张三维RGB图像用于训练与分类。在分类模型上,将软阈值去噪模块与基于Split-Attention的ResNeSt相结合提出了STResNeSt。该模型具备较强的抗噪能力,更能关注代码图像的重要特征。针对训练过程中的数据长尾分布问题,在数据增强的基础上引入了类别平衡损失函数(CB Loss),从而为样本不平衡造成的过拟合现象提供了解决方案。在Drebin数据集上,合成代码图像的准确率领先DEX灰度图像2.93个百分点,STResNeSt与残差神经网络(ResNet)相比准确率提升了1.1个百分点,且数据增强结合CB Loss的方案将F1值最高提升了2.4个百分点。实验结果表明,所提方法的平均分类准确率达到了98.97%,能有效分类Android恶意软件家族。

    图表 | 参考文献 | 相关文章 | 多维度评价
    8. 基于贝叶斯优化的无标签网络剪枝算法
    高媛媛, 余振华, 杜方, 宋丽娟
    《计算机应用》唯一官方网站    2023, 43 (1): 30-36.   DOI: 10.11772/j.issn.1001-9081.2021112020
    摘要90)   HTML8)    PDF (1167KB)(39)    收藏

    针对深度神经网络(DNN)的参数和计算量过大问题,提出一种基于贝叶斯优化的无标签网络剪枝算法。首先,利用全局剪枝策略来有效避免以逐层方式修剪而导致的模型次优压缩率;其次,在网络剪枝过程中不依赖数据样本标签,并通过最小化剪枝网络与基线网络输出特征的距离对网络每层的压缩率进行优化;最后,利用贝叶斯优化算法寻找网络每一层的最优剪枝率,以提高子网搜索的效率和精度。实验结果表明,使用所提算法在CIFAR-10数据集上对VGG-16网络进行压缩,参数压缩率为85.32%,每秒浮点运算次数(FLOPS)压缩率为69.20%,而精度损失仅为0.43%。可见,所提算法可以有效地压缩DNN模型,且压缩后的模型仍能保持良好的精度。

    图表 | 参考文献 | 相关文章 | 多维度评价
    9. 移动边缘计算中收益最大化的缓存协作策略
    王亚丽, 陈家超, 张俊娜
    《计算机应用》唯一官方网站    2022, 42 (11): 3479-3485.   DOI: 10.11772/j.issn.1001-9081.2022020194
    摘要109)   HTML8)    PDF (1553KB)(48)    收藏

    移动边缘计算(MEC)通过将资源部署在用户的近邻区域,可以减少移动设备的能耗,降低用户获取服务的时延;然而,大多数有关缓存方面的研究忽略了用户所请求服务的地域差异特性。通过研究区域所请求内容的特点和内容的动态性特性,提出一种收益最大化的缓存协作策略。首先,考虑用户偏好的区域性特征,将基站分为若干协作域,使每一个区域内的基站服务偏好相同的用户;然后,根据自回归移动平均(ARIMA)模型和内容的相似度预测每个区域的内容的流行度;最后,将缓存协作问题转化为收益最大化问题,根据存放内容所获得的收益,使用贪心算法解决移动边缘环境中缓存的内容的放置和替换问题。仿真实验表明,与基于MEC分组的协作缓存算法(GHCC)相比,所提算法在缓存命中率方面提高了28%,且平均传输时延低于GHCC。可见,所提算法可以有效提高缓存命中率,减少平均传输时延。

    图表 | 参考文献 | 相关文章 | 多维度评价
    10. 支持中文医疗问答的基于注意力机制的栈卷积神经网络模型
    滕腾, 潘海为, 张可佳, 牟雪莲, 张锡明, 陈伟鹏
    《计算机应用》唯一官方网站    2022, 42 (4): 1125-1130.   DOI: 10.11772/j.issn.1001-9081.2021071272
    摘要239)   HTML38)    PDF (726KB)(109)    收藏

    当前的中文问答匹配技术大多都需要先进行分词,中文医疗文本的分词问题需要维护医学词典来缓解分词错误对后续任务影响,而维护词典需要大量人力和知识,致使分词问题一直具有极大的挑战性。同时,现有的中文医疗问答匹配方法都是对问题和答案分开建模,并未考虑问题和答案中各自包含的关键词汇间的关联关系。因此,提出了一种基于注意力机制的栈卷积神经网络(Att-StackCNN)模型来解决中文医疗问答匹配问题。首先,使用字嵌入对问题和答案进行编码以得到二者各自的字嵌入矩阵;然后,通过利用问题和答案的字嵌入矩阵构造注意力矩阵来得到二者各自的特征注意力映射矩阵;接着,利用栈卷积神经网络(Stack-CNN)模型同时对上述矩阵进行卷积操作,从而得到问题和答案各自的语义表示;最后,进行相似度计算,并利用相似度计算最大边际损失以更新网络参数。所提模型在cMedQA数据集上的Top-1正确率比Stack-CNN模型高接近1个百分点,比Multi-CNNs模型高接近0.5个百分点。实验结果表明,Att-StackCNN模型可以提升中文医疗问答匹配效果。

    图表 | 参考文献 | 相关文章 | 多维度评价
    11. 基于演化模式的推特话题流行度预测方法
    解伟凡, 郭岩, 匡广生, 余智华, 薛源海, 沈华伟
    《计算机应用》唯一官方网站    2022, 42 (11): 3364-3370.   DOI: 10.11772/j.issn.1001-9081.2022010045
    摘要205)   HTML11)    PDF (934KB)(161)    收藏

    针对以往流行度预测方法未利用演化模式之间的差异和忽略预测时效性的问题,提出了一种基于演化模式的推特话题流行度预测方法。首先,基于K?SC算法对大量历史话题的流行度序列进行聚类,并得到6类演化模式;然后,使用各类演化模式下的历史话题数据分别训练全连接网络(FCN)作为预测模型;最后,为选择待预测话题的预测模型,提出幅度对齐的动态时间规整(AADTW)算法来计算待预测话题的已知流行度序列与各演化模式的相似度,并选取相似度最高的演化模式的预测模型进行流行度预测。在根据已知前20 h的流行度预测后5 h的流行度的任务中,与差分整合移动平均自回归(ARIMA)方法以及使用单一的全连接网络进行预测的方法相比,所提方法的预测结果的平均绝对百分比误差(MAPE)分别降低了58.2%和31.0%。实验结果表明,基于演化模式得到的模型群相较于单一模型能更加准确地预测推特话题流行度。

    图表 | 参考文献 | 相关文章 | 多维度评价
    12. 知识图谱增强的科普文本分类模型
    唐望径, 许斌, 仝美涵, 韩美奂, 王黎明, 钟琦
    《计算机应用》唯一官方网站    2022, 42 (4): 1072-1078.   DOI: 10.11772/j.issn.1001-9081.2021071278
    摘要391)   HTML36)    PDF (1056KB)(192)    收藏

    科普文本分类是将科普文章按照科普分类体系进行划分的任务。针对科普文章篇幅超过千字,模型难以聚焦关键信息,造成传统模型分类性能不佳的问题,提出一种结合知识图谱进行两级筛选的科普长文本分类模型,来减少主题无关信息的干扰,提升模型的分类性能。首先,采用四步法构建科普领域的知识图谱;然后,将该知识图谱作为距离监督器,并通过训练句子过滤器来过滤掉无关信息;最后,使用注意力机制对过滤后的句子集做进一步的信息筛选,并实现基于注意力的主题分类模型。在所构建的科普文本分类数据集(PSCD)上的实验结果表明,基于领域知识图谱的知识增强的文本分类算法模型具有更高的F1-Score,相较于TextCNN模型和BERT模型,在F1-Score上分别提升了2.88个百分点和1.88个百分点,验证了知识图谱对于长文本信息筛选的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    13. 命名数据网络研究综述
    马红桥, 杨文忠, 康鹏, 阳健康, 刘元山, 周越
    《计算机应用》唯一官方网站    2022, 42 (10): 3111-3123.   DOI: 10.11772/j.issn.1001-9081.2021091576
    摘要183)   HTML6)    PDF (2976KB)(116)    收藏

    命名数据网络(NDN)的独特优势使其被认为是下一代新型互联网体系架构的候选者。通过对NDN通信原理的分析以及与传统传输控制协议/网际协议(TCP/IP)体系架构的对比,阐述了该新型体系架构所具有的优势,并在此基础上总结分析了该网络体系架构设计的关键要素。此外,为更好地帮助研究人员了解这一新型网络架构,总结了NDN经过多年发展已取得的成功应用,并紧随主流技术,重点介绍NDN对前沿区块链技术的支持,且依托该支持对基于NDN和区块链技术应用的研究和发展进行了讨论和展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    14. 融入时空显著性的高精度视频稳像算法
    尹丽华, 康亮, 朱文华
    《计算机应用》唯一官方网站    2022, 42 (8): 2564-2570.   DOI: 10.11772/j.issn.1001-9081.2021061061
    摘要128)   HTML6)    PDF (1745KB)(40)    收藏

    为剔除复杂运动前景对视频稳像精度的干扰,同时结合时空显著性在运动目标检测上的独特优势,提出一种融入时空显著性的高精度视频稳像算法。该算法一方面通过时空显著性检测技术识别出运动目标并对其进行剔除;另一方面,采用多网格的运动路径进行运动补偿。具体包括:SURF特征点提取和匹配、时空显著性目标检测、网格划分与运动矢量计算、运动轨迹生成、多路径平滑、运动补偿等环节。实验结果表明,相较于传统的稳像算法,所提算法在稳定度(Stability)指标方面表现突出。对于有大范围运动前景干扰的视频,所提算法比RTVSM(Robust Traffic Video Stabilization Method assisted by foreground feature trajectories)的Stability指标提高了约9.6%;对于有多运动前景干扰的视频,所提算法比Bundled-paths算法的Stability指标提高了约5.8%,充分说明了所提算法对于复杂场景的稳像优势。

    图表 | 参考文献 | 相关文章 | 多维度评价
    15. 基于神经网络架构搜索的肺结节分类算法
    谢新林, 肖毅, 续欣莹
    《计算机应用》唯一官方网站    2022, 42 (5): 1424-1430.   DOI: 10.11772/j.issn.1001-9081.2021050813
    摘要237)   HTML10)    PDF (1632KB)(94)    收藏

    肺结节分类是早期肺癌诊断的重要任务。基于深度学习的肺结节分类方法虽然能够取得良好的分类精度,但存在模型复杂和可解释性差的问题。为此,提出了一种基于神经网络架构搜索的肺结节分类算法。首先,将注意力残差卷积cell作为搜索空间的基本单元,并使用偏序剪枝方法作为搜索策略来构建神经网络架构以搜索3D分类网络,从而达到网络性能和搜索速度的平衡。其次,在网络中构建了多尺度通道和空间注意力模块来提高特征描述和类别推理的可解释性。最后,采用堆叠法将搜索到的网络架构进行多模型的融合,从而获取精准的肺结节良恶性分类预测结果。实验结果表明,在肺结节分类常用数据集LIDC-IDRI上,所提算法与最新肺结节分类算法相比具有较好的分类性能和较快的收敛,且所提算法的特异性和精确率分别达到95.37%和93.42%,能够实现良恶性肺结节的准确分类。

    图表 | 参考文献 | 相关文章 | 多维度评价
    16. 基于图像秘密共享的密文域可逆信息隐藏算法
    王泽曦, 张敏情, 柯彦, 孔咏骏
    《计算机应用》唯一官方网站    2022, 42 (5): 1480-1489.   DOI: 10.11772/j.issn.1001-9081.2021050823
    摘要159)   HTML11)    PDF (4022KB)(65)    收藏

    针对当前密文域可逆信息隐藏算法嵌入秘密信息后的携密密文图像的容错性与抗灾性不强,一旦遭受攻击或损坏就无法重构原始图像与提取秘密信息的问题,提出了一种基于图像秘密共享的密文域可逆信息隐藏算法,并分析了该算法在云环境下的应用场景。首先,将加密图像分割成大小相同的n份不同携密密文图像。然后,在分割的过程中将拉格朗日插值多项式中的随机量作为冗余信息,并建立秘密信息与多项式各项系数间的映射关系。最后,通过修改加密过程的内置参数,实现秘密信息的可逆嵌入。当收集k份携密密文图像时,可无损地恢复原始图像与提取秘密信息。实验结果表明,所提算法具有计算复杂度低、嵌入容量大和完全可逆等特点。在(3,4)门限方案中,所提算法的最大嵌入率可达4 bpp;在(4,4)门限方案中,其最大嵌入率可达6 bpp。所提算法充分发挥了秘密共享方案的容灾特性,在不降低秘密共享安全性的基础上,增强了携密密文图像的容错性与抗灾性,提高了算法的嵌入容量与云环境应用场景下的容灾能力,保证了载体图像与秘密信息的安全。

    图表 | 参考文献 | 相关文章 | 多维度评价
    17. 改进字体自适应神经网络的图像字符编辑方法
    刘尚旺, 张新明, 张非
    《计算机应用》唯一官方网站    2022, 42 (7): 2227-2238.   DOI: 10.11772/j.issn.1001-9081.2021050882
    摘要151)   HTML6)    PDF (8003KB)(39)    收藏

    在当今国际化的社会,作为国际通用语言的英文字符及中文环境下的拼音字符出现在众多公共场合。当这些字符出现在图像中时,尤其在风格复杂的图像中时,难以直接对其进行编辑修改。针对上述问题,提出了一种改进文字生成网络(FANnet)的图像字符编辑方法。首先,利用基于直方图对比度(HC)的显著性检测算法改进自适应字符检测(CAD)模型,准确提取出用户所选择的图像字符;接着,根据FANnet,生成与源字符字体几乎一致的目标字符的二值图;然后,通过所提出的局部颜色分布(CDL)迁移模型,迁移源字符颜色至目标字符;最后,生成与源字符字体结构和颜色变化均高度一致的目标可编辑修改字符,从而达到字符编辑目的。实验结果表明,在MSRA-TD500、COCO-Text和ICDAR数据集上,所提方法的结构相似性(SSIM)、峰值信噪比(PSNR)和归一化均方根误差(NRMSE)平均值分别为0.776 5、18.321 1 dB和0.435 8,相较于基于字体自适应神经网络的场景文本编辑器(STEFANN)算法分别提高了18.59%、14.02%和降低了2.97%,相较于多模态小样本字体迁移模型MC-GAN算法(输入1个字符时)分别提高了30.24%、23.92%和降低了4.68%;而且针对字体结构和颜色渐变分布比较复杂的实际场景图像字符,所提方法的编辑效果也较好。该方法可以应用于图像重利用、图像字符计算机自动纠错和图像文本信息重存储

    图表 | 参考文献 | 相关文章 | 多维度评价
    18. 不平衡多分类算法综述
    李蒙蒙, 刘艺, 李庚松, 郑奇斌, 秦伟, 任小广
    《计算机应用》唯一官方网站    2022, 42 (11): 3307-3321.   DOI: 10.11772/j.issn.1001-9081.2021122060
    摘要490)   HTML62)    PDF (1861KB)(356)    收藏

    不平衡数据分类是机器学习领域的重要研究内容,但现有的不平衡分类算法通常针对不平衡二分类问题,关于不平衡多分类的研究相对较少。然而实际应用中的数据集通常具有多类别且数据分布具有不平衡性,而类别的多样性进一步加剧了不平衡数据的分类难度,因此不平衡多分类问题已经成为亟待解决的研究课题。针对近年来提出的不平衡多分类算法展开综述,根据是否采用分解策略把不平衡多分类算法分为分解方法和即席方法,并进一步将分解方法按照分解策略的不同划分为“一对一(OVO)”架构和“一对多(OVA)”架构,将即席方法按照处理技术的不同分为数据级方法、算法级方法、代价敏感方法、集成方法和基于深度网络的方法。系统阐述各类方法的优缺点及其代表性算法,总结概括不平衡多分类方法的评价指标,并通过实验深入分析代表性方法的性能,讨论了不平衡多分类的未来发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    19. 基于时域波形的半监督端到端虚假语音检测方法
    方昕, 黄泽鑫, 张聿晗, 高天, 潘嘉, 付中华, 高建清, 刘俊华, 邹亮
    《计算机应用》唯一官方网站    2023, 43 (1): 227-231.   DOI: 10.11772/j.issn.1001-9081.2021101845
    摘要119)   HTML1)    PDF (6024KB)(173)    收藏

    现代语音合成和音色转换系统产生的虚假语音对自动说话人识别系统构成了严重威胁。大多数现有的虚假语音检测系统对在训练中已知的攻击类型表现良好,但对实际应用中的未知攻击类型检测效果显著降低。因此,结合最近提出的双路径Res2Net(DP?Res2Net),提出一种基于时域波形的半监督端到端虚假语音检测方法。首先,为了解决训练数据集和测试数据集两者数据分布差异较大的问题,采用半监督学习进行领域迁移;然后,对于特征工程,直接将时域采样点输入DP?Res2Net中,增加局部的多尺度信息,并充分利用音频片段之间的依赖性;最后,输入特征经过浅层卷积模块、特征融合模块、全局平均池化模块得到嵌入张量,用来判别自然语音与虚假伪造语音。在公开可用的ASVspoof 2021 Speech Deep Fake评估集和VCC数据集上评估了所提出方法的性能,实验结果表明它的等错误率(EER)为19.97%,与官方最优基线系统相比降低了10.8%。基于时域波形的半监督端到端检测虚假语音检测方法面对未知攻击时是有效的,且具有更高的泛化能力。

    图表 | 参考文献 | 相关文章 | 多维度评价
    20. 面向通信成本优化的联邦学习算法
    郑赛, 李天瑞, 黄维
    《计算机应用》唯一官方网站    2023, 43 (1): 1-7.   DOI: 10.11772/j.issn.1001-9081.2021122054
    摘要327)   HTML17)    PDF (934KB)(209)    收藏

    联邦学习是一种能够保护数据隐私的机器学习设置,然而高昂的通信成本和客户端的异质性问题阻碍了联邦学习的规模化落地。针对这两个问题,提出一种面向通信成本优化的联邦学习算法。首先,服务器接收来自客户端的生成模型并生成模拟数据;然后,服务器利用模拟数据训练全局模型并将其发送给客户端,客户端利用全局模型进行微调后得到最终模型。所提算法仅需要客户端与服务器之间的一轮通信,并且利用微调客户端模型来解决客户端异质性问题。在客户端数量为20个时,在MNIST和CIFAR?10这两个数据集上进行了实验。结果表明,所提算法能够在保证准确率的前提下,在MNIST数据集上将通信的数据量减少至联邦平均(FedAvg)算法的1/10,在CIFAR-10数据集上将通信数据量减少至FedAvg算法的1/100。

    图表 | 参考文献 | 相关文章 | 多维度评价
    21. 深度学习可解释性研究综述
    雷霞, 罗雄麟
    《计算机应用》唯一官方网站    2022, 42 (11): 3588-3602.   DOI: 10.11772/j.issn.1001-9081.2021122118
    摘要132)   HTML5)    PDF (1703KB)(77)    收藏

    随着深度学习的广泛应用,人类越来越依赖于大量采用深度学习技术的复杂系统,然而,深度学习模型的黑盒特性对其在关键任务应用中的使用提出了挑战,引发了道德和法律方面的担忧,因此,使深度学习模型具有可解释性是使它们令人信服首先要解决的问题。于是,关于可解释的人工智能领域的研究应运而生,主要集中于向人类观察者明确解释模型的决策或行为。对深度学习可解释性的研究现状进行综述,为进一步深入研究建立更高效且具有可解释性的深度学习模型确立良好的基础。首先,对深度学习可解释性进行了概述,阐明可解释性研究的需求和定义;然后,从解释深度学习模型的逻辑规则、决策归因和内部结构表示这三个方面出发介绍了几种可解释性研究的典型模型和算法,另外还指出了三种常见的内置可解释模型的构建方法;最后,简单介绍了忠实度、准确性、鲁棒性和可理解性这四种评价指标,并讨论了深度学习可解释性未来可能的发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    22. 面向边缘智能计算的数据场分类算法
    孙志于, 王琪, 高彬, 梁中军, 徐晓斌, 王尚广
    《计算机应用》唯一官方网站    2022, 42 (11): 3473-3478.   DOI: 10.11772/j.issn.1001-9081.2021091692
    摘要86)   HTML7)    PDF (2398KB)(45)    收藏

    针对聚类算法研究中普遍存在不能充分利用历史信息、参数优化过程慢的问题,结合边缘智能计算提出了一种基于数据场的分布式自适应分类算法,算法部署于边缘计算(EC)节点,提供本地的智能分类服务。该算法通过引入监督信息改造传统数据场聚类模型的结构,使其能够应用于分类问题,扩展了数据场理论可应用的领域。基于数据场思想,该算法将数据的域值空间转化为数据势场空间,依据空间势值将数据分为无标签的多个类簇结果,再将类簇结果与历史监督信息进行云相似度比较,并将其归属于与其最相似的类中;同时,提出了一种基于滑动步长的参数搜索策略以提高算法参数的优化速度。在此算法基础上还提出了一种基于分布式的数据处理方案,通过云中心与边缘设备的协作,将分类任务切割分配到不同层次的节点,实现模块化、低耦合。仿真结果表明,所提算法的查准率和查全率均保持在96%以上,且汉明损失均低于0.022。实验结果表明,所提算法可以准确分类并提高参数优化速度,整体性能优于逻辑回归(LR)算法与随机森林(RF)算法。

    图表 | 参考文献 | 相关文章 | 多维度评价
    23. 求解工程约束问题的新型智能优化算法及展望
    张孟健, 王德光, 汪敏, 杨靖
    《计算机应用》唯一官方网站    2022, 42 (2): 534-541.   DOI: 10.11772/j.issn.1001-9081.2021020265
    摘要287)   HTML31)    PDF (849KB)(233)    收藏

    为了研究新型智能优化算法的性能和应用前景,选择了近几年提出的6种仿生智能优化算法:哈里斯鹰优化(HHO)算法、平衡优化(EO)算法、海洋捕食者算法(MPA)、政治优化(PO)算法、黏液霉菌算法(SMA)和堆阵优化(HBO)算法,对其性能和在不同带约束的工程优化问题上的应用进行对比分析。首先,对6种优化算法的基本原理进行介绍;然后,用6种优化算法对10个基准测试函数进行寻优测试;接着,将6种优化算法用于求解3种带约束的工程优化问题。实验结果表明,对于单峰和多峰测试函数的寻优,PO的收敛精度最佳,能够多次达到理论最优值0,且收敛速度较快;对于求解工程约束问题,EO和MPA较好,因为的标准差的数量级较小,且寻优速度较快,稳定性高。最后,分析了6种优化算法的改进方法及其发展潜力。

    图表 | 参考文献 | 相关文章 | 多维度评价
    24. 联邦学习通信开销研究综述
    邱鑫源, 叶泽聪, 崔翛龙, 高志强
    《计算机应用》唯一官方网站    2022, 42 (2): 333-342.   DOI: 10.11772/j.issn.1001-9081.2021020232
    摘要1057)   HTML168)    PDF (1356KB)(1683)    收藏

    为了解决数据共享需求与隐私保护要求之间不可调和的矛盾,联邦学习应运而生。联邦学习作为一种分布式机器学习,其中的参与方与中央服务器之间需要不断交换大量模型参数,而这造成了较大通信开销;同时,联邦学习越来越多地部署在通信带宽有限、电量有限的移动设备上,而有限的网络带宽和激增的客户端数量会使通信瓶颈加剧。针对联邦学习的通信瓶颈问题,首先分析联邦学习的基本工作流程;然后从方法论的角度出发,详细介绍基于降低模型更新频率、模型压缩、客户端选择的三类主流方法和模型划分等特殊方法,并对具体优化方案进行深入的对比分析;最后,对联邦学习通信开销技术研究的发展趋势进行了总结和展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    25. 面向航空自组网的节点失效波及影响分析模型
    谢丽霞, 严莉萍, 杨宏宇
    《计算机应用》唯一官方网站    2022, 42 (2): 493-501.   DOI: 10.11772/j.issn.1001-9081.2021020348
    摘要165)   HTML14)    PDF (1030KB)(103)    收藏

    为有效分析航空自组网(AANET)中节点失效对整个网络造成的影响,并提高网络在发生安全事件之后的稳定性,提出一种面向AANET的节点失效波及影响分析模型。首先,根据AANET的主要业务建立有向加权业务网络,基于实时AANET建立以各类航空器为节点的无向加权物理网络,并通过业务-物理网络映射关系建立相依网络模型;其次,提出面向AANET的失效传播模型,分析网络节点状态及其之间的相互转换方式;最后,基于链路生存性改进失效流量再分配算法,并将其应用于构建的相依网络模型上,得到因节点失效波及反应转化成失效节点和业务降级节点的集合,并将其用于分析网络各时刻的波及影响情况。实验结果表明,所提出的模型能更准确反映AANET节点失效波及影响情况。

    图表 | 参考文献 | 相关文章 | 多维度评价
    26. 基于星火区块链的跨链机制
    谢家贵, 李志平, 金键
    《计算机应用》唯一官方网站    2022, 42 (2): 519-527.   DOI: 10.11772/j.issn.1001-9081.2021020353
    摘要482)   HTML48)    PDF (888KB)(437)    收藏

    针对当前区块链技术飞速发展的过程中,不同区块链之间相对孤立,数据不能交互共享的问题,提出一种基于星火区块链的跨链机制。首先,对常见跨链技术和当前主流跨链项目作了分析,研究了不同技术和项目的实现原理,并总结了它们的区别和优缺点;然后,利用主子链模式的区块链架构,设计了智能合约组件、交易校验组件、交易超时组件等关键核心组件,并详细阐述了跨链过程的交易发起、交易路由、交易核验、交易确认这四个阶段;最后,设计了可行的实验进行性能测试和安全性测试,并对安全性进行了分析。实验结果表明,星火区块链在交易延迟、吞吐量和尖峰冲击测试等方面相比其他区块链有较显著的优势;另外在恶意节点的比例较低时,跨链交易的成功率为100%,不同子链间可以安全稳定地进行跨链交易。该机制解决了区块链之间数据交互共享的问题,能为下一步星火区块链应用场景的设计提供技术参考。

    图表 | 参考文献 | 相关文章 | 多维度评价
    27. 基于多模态深度融合的虚假信息检测
    孟杰, 王莉, 杨延杰, 廉飚
    《计算机应用》唯一官方网站    2022, 42 (2): 419-425.   DOI: 10.11772/j.issn.1001-9081.2021071184
    摘要310)   HTML41)    PDF (1079KB)(179)    收藏

    针对虚假信息检测中图片特征提取不充分,以及忽视了单模内关系以及单模与多模之间交互作用的问题,提出一种基于文本和图片信息的多模态深度融合(MMDF)模型。首先,用双向门控循环单元(Bi-GRU)提取文本的丰富语义特征,用多分支卷积-循环神经网络(CNN-RNN)提取图片的多层次特征;然后,建立模间和模内的注意力机制以捕获语言和视觉领域之间的高层交互,并得到多模态的联合表征;最后,将各模态原表征与融合后的多模态联合表征依据注意力权重进行再融合,以加强原信息的作用。该模型与多模态变分自动编码器(MVAE)模型相比,在中国计算机学会(CCF)竞赛和微博数据集上的准确率分别提升了1.9个百分点和2.4个百分点。实验结果表明,所提模型能够充分融合多模态信息,有效提高虚假信息检测的准确率。

    图表 | 参考文献 | 相关文章 | 多维度评价
    28. 基于卷积神经网络交互的用户属性偏好建模的推荐模型
    潘仁志, 钱付兰, 赵姝, 张燕平
    《计算机应用》唯一官方网站    2022, 42 (2): 404-411.   DOI: 10.11772/j.issn.1001-9081.2021041070
    摘要302)   HTML35)    PDF (633KB)(182)    收藏

    潜在因子模型(LFM)以其优异的性能在推荐领域得到了广泛应用。在LFM中除了使用交互数据以外,辅助信息也被引入用于解决数据稀疏的问题,从而提升推荐的性能。然而,大多数LFM仍然存在一些问题:第一,LFM在对用户进行建模时,忽略了用户如何根据其特征偏好对项目作出决策;第二,采用内积的特征交互假设特征维度之间是相互独立的,而没有考虑到特征维度之间的关联。针对上述问题,提出一种新的推荐模型:基于卷积神经网络(CNN)交互的用户属性偏好建模的推荐模型(UAMC)。该模型首先获得用户的一般偏好、用户属性和项目嵌入,然后将用户属性和项目嵌入进行交互,以探索用户不同的属性对不同项目的偏好;接着将交互过的用户偏好属性送入CNN层来探索不同偏好属性的不同维度的关联,从而得到用户的属性偏好向量;接着使用注意力机制结合用户的一般偏好和CNN层得到的属性偏好,从而获得用户的向量表示;最后采用点积来计算用户对项目的评分。在Movielens-100K、Movielens-1M和Book-crossing这三个真实的数据集上进行了实验。实验结果表明,所提模型在均方根误差(RMSE)上与稀疏数据预测的神经网络分解机(NFM)模型相比分别降低了1.75%、2.78%和0.25%,验证了在LFM的评分预测推荐中,UAMC在提升推荐精度上的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    29. 注入注意力机制的深度特征融合新闻推荐模型
    刘羽茜, 刘玉奇, 张宗霖, 卫志华, 苗冉
    《计算机应用》唯一官方网站    2022, 42 (2): 426-432.   DOI: 10.11772/j.issn.1001-9081.2021050907
    摘要381)   HTML48)    PDF (755KB)(192)    收藏

    现有新闻推荐模型在挖掘新闻特征和用户特征时,往往没有考虑所浏览新闻之间的关系、时序变化以及不同新闻对用户的重要性,从而缺乏全面性;同时,现有模型在新闻更细粒度的内容特征挖掘方面有欠缺。因此构建了一个能够全面而不冗余地进行用户表征并能提取新闻更细粒度片段特征的新闻推荐模型——注入注意力机制的深度特征融合新闻推荐模型。该模型首先采用基于深度学习的方法,通过注入注意力机制的卷积神经网络(CNN)对新闻文本特征矩阵进行深度提取;然后,通过对用户已经浏览的新闻添加时序预测,并注入多头自注意力机制,来提取用户的兴趣特征;最后,使用真实的中文数据集与英文数据集,以收敛时间、平均值倒数秩(MRR)和归一化折现累积收益(nDCG)为指标进行实验。与基于多头自注意力的神经网络新闻推荐(NRMS)模型等进行对比,该模型在中文数据集上nDCG的提升率为-0.22%~4.91%,MRR的提升率为-0.82%~3.48%,而且,与唯一为负提升率的模型相比,收敛时间缩短7.63%;在英文数据集上该模型在nDCG和MRR上的提升率分别为0.07%~1.75%与0.03%~1.30%,且该模型始终具有较快的收敛速度。消融实验的结果表明增加注意力机制与时序模块是有效的。

    图表 | 参考文献 | 相关文章 | 多维度评价
    30. 多视角约束级联回归的视频人脸特征点跟踪
    代少升, 熊昆, 吴云铎, 肖佳伟
    《计算机应用》唯一官方网站    2022, 42 (8): 2415-2422.   DOI: 10.11772/j.issn.1001-9081.2021060996
    摘要102)   HTML7)    PDF (2970KB)(43)    收藏

    近年来,静态图像中人脸特征点检测算法得到了极大的改进,然而,由于真实视频中头部姿态、遮挡和光照等因素的变化,人脸特征点检测和跟踪仍然具有挑战性。为了解决这一问题,提出一种多视角约束级联回归的视频人脸特征点跟踪算法。首先,利用三维和二维稀疏点集建立变换关系,并估计初始形状;其次,由于人脸图像存在较大的姿态差异,使用仿射变换对人脸图像进行姿态矫正;在构造形状回归模型时,采用多视角约束级联回归模型减小形状方差,从而使学习到的回归模型对形状方差具有更强的鲁棒性;最后,采用重新初始化机制,并在特征点正确定位时使用归一化互相关(NCC)模板匹配跟踪算法建立连续帧之间的形状关系。在公共数据集上的实验结果表明:该算法的平均误差小于眼间距离的10%。

    图表 | 参考文献 | 相关文章 | 多维度评价
2023年 43卷 1期
刊出日期: 2023-01-10
文章目录
过刊浏览
荣誉主编:张景中
主  编:徐宗本
副主编
:申恒涛 夏朝晖

国内邮发代号:62-110
国外发行代号:M4616
地址:四川成都双流区四川天府新区
   兴隆街道科智路1369号
   中科信息(科学城园区) B213
   (计算机应用编辑部)
电话:028-85224283-803
   028-85222239-803
网址:www.joca.cn
E-mail: bjb@joca.cn
期刊微信公众号
CCF扫码入会