摘要点击排行

    一年内发表文章 |  两年内 |  三年内 |  全部

    当前位置: 全部
    Please wait a minute...
    选择: 显示/隐藏图片
    1. 联邦学习通信开销研究综述
    邱鑫源, 叶泽聪, 崔翛龙, 高志强
    《计算机应用》唯一官方网站    2022, 42 (2): 333-342.   DOI: 10.11772/j.issn.1001-9081.2021020232
    摘要842)   HTML157)    PDF (1356KB)(1566)    收藏

    为了解决数据共享需求与隐私保护要求之间不可调和的矛盾,联邦学习应运而生。联邦学习作为一种分布式机器学习,其中的参与方与中央服务器之间需要不断交换大量模型参数,而这造成了较大通信开销;同时,联邦学习越来越多地部署在通信带宽有限、电量有限的移动设备上,而有限的网络带宽和激增的客户端数量会使通信瓶颈加剧。针对联邦学习的通信瓶颈问题,首先分析联邦学习的基本工作流程;然后从方法论的角度出发,详细介绍基于降低模型更新频率、模型压缩、客户端选择的三类主流方法和模型划分等特殊方法,并对具体优化方案进行深入的对比分析;最后,对联邦学习通信开销技术研究的发展趋势进行了总结和展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    2. 联邦学习综述:概念、技术、应用与挑战
    梁天恺 曾碧 陈光
    《计算机应用》唯一官方网站    DOI: 10.11772/j.issn.1001-9081.2021101821
    录用日期: 2021-12-23

    3. 门罗币匿名及追踪技术综述
    林定康, 颜嘉麒, 巴楠登, 符朕皓, 姜皓晨
    《计算机应用》唯一官方网站    2022, 42 (1): 148-156.   DOI: 10.11772/j.issn.1001-9081.2021020296
    摘要569)   HTML36)    PDF (723KB)(356)    收藏

    虚拟数字货币为恐怖分子融资、洗钱、毒品交易等犯罪活动提供了温床,而门罗币作为新兴数字货币的代表,具有公认的高匿名性。针对利用门罗币匿名性犯罪的问题,从技术角度探索门罗币匿名技术及其追踪技术,综述近年来的研究进展,从而为有效应对基于区块链技术的犯罪提供技术支持。具体来说,总结了门罗币匿名技术的演进,并梳理了学术界关于门罗币匿名技术的追溯对策。首先,在匿名技术中,介绍了环签名、保证不可链接性(一次性公钥)、保证不可追溯性、提高匿名性的重要版本升级等。然后,在追踪技术中,介绍了0-mixin攻击、输出合并攻击、最新猜测攻击、封闭集攻击、泛洪攻击、恶意远程节点攻击、钱包环攻击等攻击方法。最后,基于对匿名技术和追溯对策的分析,得出了四点结论:门罗币的匿名技术和追踪技术的发展相互促进;RingCT的应用是一把双刃剑,既使得从币值出发的被动攻击方法失效,也使得主动攻击方法更加容易奏效;输出合并攻击和0-mixin攻击具有互补作用;门罗币的系统安全链条仍待理顺。

    图表 | 参考文献 | 相关文章 | 多维度评价
    4. 融合BERT与标签语义注意力的文本多标签分类方法
    吕学强, 彭郴, 张乐, 董志安, 游新冬
    《计算机应用》唯一官方网站    2022, 42 (1): 57-63.   DOI: 10.11772/j.issn.1001-9081.2021020366
    摘要503)   HTML35)    PDF (577KB)(579)    收藏

    多标签文本分类(MLTC)是自然语言处理(NLP)领域的重要子课题之一。针对多个标签之间存在复杂关联性的问题,提出了一种融合BERT与标签语义注意力的MLTC方法TLA-BERT。首先,通过对自编码预训练模型进行微调,从而学习输入文本的上下文向量表示;然后,使用长短期记忆(LSTM)神经网络将标签进行单独编码;最后,利用注意力机制显性突出文本对每个标签的贡献,以预测多标签序列。实验结果表明,与基于序列生成模型(SGM)算法相比,所提出的方法在AAPD与RCV1-v2公开数据集上,F1值分别提高了2.8个百分点与1.5个百分点。

    图表 | 参考文献 | 相关文章 | 多维度评价
    5. 基于节点相似度的无监督属性图嵌入模型
    李扬, 吴安彪, 袁野, 赵琳琳, 王国仁
    《计算机应用》唯一官方网站    2022, 42 (1): 1-8.   DOI: 10.11772/j.issn.1001-9081.2021071221
    摘要436)   HTML109)    PDF (864KB)(430)    收藏

    属性图嵌入旨在将属性图中的节点表示为低维向量,并同时保留节点的拓扑信息和属性信息。属性图嵌入已经有一系列相关工作,然而它们大多数提出的是有监督或半监督的算法。在实际应用中,需要标记的节点数量多,导致这些属性图嵌入算法的难度大,且需要消耗巨大的人力物力。针对上述问题以无监督的视角重新分析,提出了一种无监督的属性图嵌入算法。首先,通过已存在的无属性图嵌入算法和属性图的属性分别计算节点的拓扑信息和属性信息;其次,利用图卷积网络(GCN)得到节点的嵌入向量,并使得嵌入向量与拓扑信息以及嵌入向量与属性信息的差最小;最终,使拓扑信息和属性信息都相似的成对节点得到相似嵌入。与图自动编码器(GAE)方法相比,所提出的方法在Cora、Citeseer数据集上的节点分类准确率分别提升了1.2个百分点和2.4个百分点。实验结果表明,所提出的方法能够有效提高生成的嵌入的质量。

    图表 | 参考文献 | 相关文章 | 多维度评价
    6. 解耦表征学习研究进展
    成科扬, 孟春运, 王文杉, 师文喜, 詹永照
    《计算机应用》唯一官方网站    2021, 41 (12): 3409-3418.   DOI: 10.11772/j.issn.1001-9081.2021060895
    摘要434)   HTML48)    PDF (877KB)(247)    收藏

    解耦表征学习旨在对影响数据形态的关键因素进行建模,使得某一关键因素的变化仅仅引起数据在某项特征上的变化,而其他的特征不受影响,这有利于应对机器学习在模型可解释性、对象生成和操作以及零样本学习等问题上的挑战,因此解耦表征学习一直是机器学习领域的一个研究热点。从解耦表征学习的历史与动机入手,对解耦表征学习的研究现状以及应用进行归纳总结,分析了解耦表征所具有的不变性、复用性等特性,介绍了基于生成解耦表征变差因素的研究、基于流形相互作用解耦表征变差因素的研究、基于对抗性训练解耦表征变差因素的研究,以及一种变分自编码器β-VAE的研究等最新研究动态。同时,阐述了解耦表征学习的典型应用,并对未来的研究方向作出了展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    7. 二进制代码相似性搜索研究进展
    夏冰, 庞建民, 周鑫, 单征
    《计算机应用》唯一官方网站    2022, 42 (4): 985-998.   DOI: 10.11772/j.issn.1001-9081.2021071267
    摘要430)   HTML98)    PDF (841KB)(412)    收藏

    随着物联网和工业互联网的快速发展,网络空间安全的研究日益受到工业界和学术界的重视。由于源代码无法获取,二进制代码相似性搜索成为漏洞挖掘和恶意代码分析的关键核心技术。首先,从二进制代码相似性搜索基本概念出发,给出二进制代码相似性搜索系统框架;然后,围绕相似性技术系统介绍二进制代码语法相似性搜索、语义相似性搜索和语用相似性搜索的发展现状;其次,从二进制哈希、指令序列、图结构、基本块语义、特征学习、调试信息恢复和函数高级语义识别等角度总结比较现有解决方案;最后,展望二进制代码相似性搜索未来发展方向与前景。

    图表 | 参考文献 | 相关文章 | 多维度评价
    8. 基于分解的高维多目标改进进化算法
    乔钢柱, 王瑞, 孙超利
    《计算机应用》唯一官方网站    2021, 41 (11): 3097-3103.   DOI: 10.11772/j.issn.1001-9081.2020121895
    摘要408)   HTML91)    PDF (525KB)(377)    收藏

    针对基于参考向量的高维多目标进化算法中随机选择父代个体会降低算法的收敛速度,以及部分参考向量分配个体的缺失会减弱种群多样性的问题,提出了一种基于分解的高维多目标改进优化算法(IMaOEA/D)。首先,在分解策略框架下,当一个参考向量至少分配了2个个体时,对该参考向量分配的个体根据其到理想点的距离选择父代个体来繁殖子代,从而提高搜索速度。然后,针对未能分配到至少2个个体的参考向量,则从所有个体中选择沿该参考向量和理想点距离最小的点,使得该参考向量至少有2个个体与其相关。同时,确保环境选择后每个参考向量有一个个体与其相关,从而保证种群的多样性。在10个和15个目标的MaF测试问题集上将所提算法与其他4个基于分解的高维多目标优化算法进行了测试对比,实验结果表明所提算法对于高维多目标优化问题具有较好的寻优能力,且该算法在30个测试问题中的14个测试问题上得到的优化结果均优于其他4个对比算法,特别是对于退化问题具有一定的寻优优势。

    图表 | 参考文献 | 相关文章 | 多维度评价
    9. 基于改进YOLOv5的安全帽佩戴检测算法
    张锦, 屈佩琪, 孙程, 罗蒙
    《计算机应用》唯一官方网站    2022, 42 (4): 1292-1300.   DOI: 10.11772/j.issn.1001-9081.2021071246
    摘要392)   HTML18)    PDF (7633KB)(245)    收藏

    针对现有安全帽佩戴检测干扰性强、检测精度低等问题,提出一种基于改进YOLOv5的安全帽检测新算法。首先,针对安全帽尺寸不一的问题,使用K-Means++算法重新设计先验框尺寸并将其匹配到相应的特征层;其次,在特征提取网络中引入多光谱通道注意力模块,使网络能够自主学习每个通道的权重,增强特征间的信息传播,从而加强网络对前景和背景的辨别能力;最后,在训练迭代过程中随机输入不同尺寸的图像,以此增强算法的泛化能力。实验结果表明,在自制安全帽佩戴检测数据集上,所提算法的均值平均精度(mAP)达到96.0%,而对佩戴安全帽的工人的平均精度(AP)达到96.7%,对未佩戴安全帽的工人的AP达到95.2%,相较于YOLOv5算法,该算法对佩戴安全帽的平均检测准确率提升了3.4个百分点,满足施工场景下安全帽佩戴检测的准确率要求。

    图表 | 参考文献 | 相关文章 | 多维度评价
    10. 基于AlphaPose优化模型的老人跌倒行为检测算法
    马敬奇, 雷欢, 陈敏翼
    《计算机应用》唯一官方网站    2022, 42 (1): 294-301.   DOI: 10.11772/j.issn.1001-9081.2021020331
    摘要386)   HTML17)    PDF (7482KB)(452)    收藏

    针对在低功耗、低成本硬件平台快速准确检测老人跌倒高危行为的问题,提出了一种基于AlphaPose优化模型的老人异常行为检测算法。首先,对行人目标检测模型和姿态估计模型进行优化,以加快人体目标检测和姿态关节点推理;然后,通过优化的AlphaPose模型快速计算得到人体姿态关节点图像坐标数据;最后,计算人体跌倒瞬间头部关节点线速度与胯部关节线速度之间的关系,以及人体中垂线与图像X轴之间夹角的变化来判断跌倒现象的发生。将所提算法移植到Jetson Nano嵌入式开发板上,并与当前主要的基于人体姿态的跌倒检测算法YOLOv3+Pose、YOLOv4+Pose、YOLOv5+Pose、trt_pose和NanoDet+Pose进行对比分析。实验结果表明,在所用嵌入式平台上,图像分辨率为320×240时,所提算法的检测帧率达到8.83 frame/s,准确率为0.913,均优于对比算法。该算法具有较高的实时性和准确率,能够及时检测老人跌倒行为的发生。

    图表 | 参考文献 | 相关文章 | 多维度评价
    11. 基于多重注意力机制的图神经网络股市波动预测方法
    李晓寒, 王俊, 贾华丁, 萧刘
    《计算机应用》唯一官方网站    2022, 42 (7): 2265-2273.   DOI: 10.11772/j.issn.1001-9081.2021081487
    摘要378)   HTML7)    PDF (2246KB)(134)    收藏

    股票市场是金融市场关键组成部分,因此对股票市场波动的研究对合理化控制金融市场风险、提高投资收益提供了重要支持,一直以来都是学术界和相关业界的关注焦点,然而,股票市场会受到各种因素的影响。面对股票市场中多源化、异构化的信息,如何高效挖掘、融合股票市场的多源异构数据具有挑战性。为了充分解释不同信息及信息间相互作用对于股票市场价格波动的影响,提出一种基于多重注意力机制的图神经网络来预测股票市场的价格波动。首先,引入关系维度构建股票市场交易数据和新闻文本的异构子图,并利用多重注意力机制实现图数据的融合;其次,通过图神经网络门控循环单元(GRU)进行图分类,在此基础上完成对股票市场中上证综合指数、沪深300指数、深证成份指数这三个重要指数波动的预测。实验结果表明,从异构信息特性角度,相较于股票市场交易数据,股市新闻信息对于股票价格影响存在滞后性;从异构信息融合角度,所提方法与支持向量机(SVM)、随机森林、多核k-means (MKKM)聚类等算法相比,预测准确率分别提升了17.88个百分点、30.00个百分点和38.00个百分点,并进行了模型交易策略的量化投资模拟。

    图表 | 参考文献 | 相关文章 | 多维度评价
    12. 基于星火区块链的跨链机制
    谢家贵, 李志平, 金键
    《计算机应用》唯一官方网站    2022, 42 (2): 519-527.   DOI: 10.11772/j.issn.1001-9081.2021020353
    摘要377)   HTML37)    PDF (888KB)(396)    收藏

    针对当前区块链技术飞速发展的过程中,不同区块链之间相对孤立,数据不能交互共享的问题,提出一种基于星火区块链的跨链机制。首先,对常见跨链技术和当前主流跨链项目作了分析,研究了不同技术和项目的实现原理,并总结了它们的区别和优缺点;然后,利用主子链模式的区块链架构,设计了智能合约组件、交易校验组件、交易超时组件等关键核心组件,并详细阐述了跨链过程的交易发起、交易路由、交易核验、交易确认这四个阶段;最后,设计了可行的实验进行性能测试和安全性测试,并对安全性进行了分析。实验结果表明,星火区块链在交易延迟、吞吐量和尖峰冲击测试等方面相比其他区块链有较显著的优势;另外在恶意节点的比例较低时,跨链交易的成功率为100%,不同子链间可以安全稳定地进行跨链交易。该机制解决了区块链之间数据交互共享的问题,能为下一步星火区块链应用场景的设计提供技术参考。

    图表 | 参考文献 | 相关文章 | 多维度评价
    13. 自然语言处理在文本情感分析领域应用综述
    王颖洁, 朱久祺, 汪祖民, 白凤波, 弓箭
    《计算机应用》唯一官方网站    2022, 42 (4): 1011-1020.   DOI: 10.11772/j.issn.1001-9081.2021071262
    摘要344)   HTML56)    PDF (783KB)(240)    收藏

    文本情感分析已经逐渐成为自然语言处理(NLP)的重要内容,并在系统推荐、用户情感信息获取,为政府、企业提供舆情参考等领域越来越占据重要地位。通过文献调研的方式,对情感分析领域的方法进行对比和综述。首先,从时间、方法等维度对情感分析的方法进行文献调研;然后,对情感分析的主要方法、应用场景进行归纳总结和对比;最后,在此基础上分析每种方法的优缺点。根据分析结果可以知道,在面对不同的任务场景,主要有三种情感分析的方法:基于情感字典的情感分析法、基于机器学习的情感分析法和基于深度学习的情感分析法,基于多策略混合的方法成为改进的趋势。文献调研表明,文本情感分析的技术方法还有改进的空间,在电子商务、心理治疗、舆情监控方面有较大市场和发展前景

    图表 | 参考文献 | 相关文章 | 多维度评价
    14. 基于多尺度卷积和注意力机制的LSTM时间序列分类
    玄英律, 万源, 陈嘉慧
    《计算机应用》唯一官方网站    2022, 42 (8): 2343-2352.   DOI: 10.11772/j.issn.1001-9081.2021061062
    摘要343)   HTML33)    PDF (711KB)(231)    收藏

    时间序列的多尺度特征包含丰富的类别信息,且这些信息对分类具有不同的重要程度,然而现有的单变量时间序列分类模型通常以固定大小的卷积核提取序列特征,导致不能有效地获取并聚焦重要的多尺度特征。针对上述问题,提出一种基于多尺度卷积和注意力机制(MCA)的长短时记忆(LSTM)模型(MCA-LSTM),它能够关注并融合重要的多尺度特征,从而实现更准确的分类。其中,LSTM使用记忆细胞和门机制控制序列信息的传递,并充分提取时间序列的相关性信息;多尺度卷积模块(MCM)使用具有不同卷积核的卷积神经网络(CNN)提取序列的多尺度特征;注意力模块(AM)融合通道信息获取特征的重要性并分配注意力权重,从而使网络关注重要的时间序列特征。在UCR档案的65个单变量时间序列数据集上的实验结果表明,对比当前最先进的基于深度学习的时间序列分类模型:USRL-FordA(Unsupervised Scalable Representation Learning-FordA)、USRL-Combined (1-NN) (Unsupervised Scalable Representation Learning-Combined (1-Nearest Neighbor)) OS-CNN(Omni-Scale Convolutional Neural Network)、Inception-Time和RTFN(Robust Temporal Feature Network for time series classification),MCA-LSTM在平均错误率(ME)上分别降低了7.48、9.92、2.43、2.09和0.82个百分点,并取得了最高的算术平均排名(AMR)和几何平均排名(GMR),分别为2.14和3.23,这些充分体现了MCA-LSTM模型在单变量时间序列分类中的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    15. 基于卷积神经网络的图像分类算法综述
    季长清, 高志勇, 秦静, 汪祖民
    《计算机应用》唯一官方网站    2022, 42 (4): 1044-1049.   DOI: 10.11772/j.issn.1001-9081.2021071273
    摘要341)   HTML37)    PDF (605KB)(245)    收藏

    卷积神经网络(CNN)是目前基于深度学习的计算机视觉领域中重要的研究方向之一。它在图像分类和分割、目标检测等的应用中表现出色,其强大的特征学习与特征表达能力越来越受到研究者的推崇。然而,CNN仍存在特征提取不完整、样本训练过拟合等问题。针对这些问题,介绍了CNN的发展、CNN经典的网络模型及其组件,并提供了解决上述问题的方法。通过对CNN模型在图像分类中研究现状的综述,为CNN的进一步发展及研究方向提供了建议

    图表 | 参考文献 | 相关文章 | 多维度评价
    16. 基于Deeplab V3 Plus的自适应注意力机制图像分割算法
    杨贞, 彭小宝, 朱强强, 殷志坚
    《计算机应用》唯一官方网站    2022, 42 (1): 230-238.   DOI: 10.11772/j.issn.1001-9081.2021010137
    摘要334)   HTML20)    PDF (1160KB)(337)    收藏

    针对Deeplab V3 Plus在下采样操作中图像细节信息和小目标信息过早丢失的问题,提出了一种基于Deeplab V3 Plus网络架构的自适应注意力机制图像语义分割算法。首先,在Deeplab V3 Plus主干网络的输入层、中间层和输出层均嵌入注意力机制模块,并且引入一个权重值与每个注意力机制模块相乘,以达到约束注意力机制模块的目的;其次,在PASCAL VOC2012 公共分割数据集上训练嵌入注意力模块的Deeplab V3 Plus,以此手动获取注意力机制模块权重值(经验值);然后,探索输入层、中间层和输出层中注意力机制模块的多种融合方式;最后,将注意力机制模块的权重值更改为反向传播自动更新,从而得到注意力机制模块的最优权值和最优分割模型。实验结果表明,与原始Deeplab V3 Plus网络结构相比,引入自适应注意力机制的Deeplab V3 Plus网络结构在PASCAL VOC2012公共分割据集和植物虫害数据集上的平均交并比(MIOU)分别提高了1.4个百分点和0.7个百分点。

    图表 | 参考文献 | 相关文章 | 多维度评价
    17. 分布式机器学习作业性能干扰分析与预测
    李洪亮, 张弄, 孙婷, 李想
    《计算机应用》唯一官方网站    2022, 42 (6): 1649-1655.   DOI: 10.11772/j.issn.1001-9081.2021061404
    摘要333)   HTML77)    PDF (1121KB)(352)    收藏

    通过分析分布式机器学习中作业性能干扰的问题,发现性能干扰是由于内存过载、带宽竞争等GPU资源分配不均导致的,为此设计并实现了快速预测作业间性能干扰的机制,该预测机制能够根据给定的GPU参数和作业类型自适应地预测作业干扰程度。首先,通过实验获取分布式机器学习作业运行时的GPU参数和干扰率,并分析出各类参数对性能干扰的影响;其次,依托多种预测技术建立GPU参数-干扰率模型进行作业干扰率误差分析;最后,建立自适应的作业干扰率预测算法,面向给定的设备环境和作业集合自动选择误差最小的预测模型,快速、准确地预测作业干扰率。选取5种常用的神经网络作业,在两种GPU设备上设计实验并进行结果分析。结果显示,所提出的自适应干扰预测(AIP)机制能够在不提供任何预先假设信息的前提下快速完成预测模型的选择和性能干扰预测,耗时在300 s以内,预测干扰率误差在2%~13%,可应用于作业调度和负载均衡等场景。

    图表 | 参考文献 | 相关文章 | 多维度评价
    18. 基于时序超图卷积神经网络的股票趋势预测方法
    李晓杰, 崔超然, 宋广乐, 苏雅茜, 吴天泽, 张春云
    《计算机应用》唯一官方网站    2022, 42 (3): 797-803.   DOI: 10.11772/j.issn.1001-9081.2021050748
    摘要324)   HTML17)    PDF (742KB)(186)    收藏

    传统的股票预测方法大多基于时间序列模型,忽视了股票之间复杂的关系,并且该关系往往超出成对连接,例如同行业板块内股票或者基金持仓多支股票。针对该问题,提出一种基于时序超图卷积神经网络(HGCN)的股价走势预测方法,根据金融投资事实构造超图模型以拟合股票之间的多元关系,该模型包括两大组件:门控循环单元(GRU)网络和超图卷积神经网络。GRU网络对历史数据进行时间序列建模,捕捉长期依赖关系;HGCN建模股票间的高阶关系以学习内在关系属性,从而将股票间多元关系信息引入到传统的时序建模中,进行端到端的趋势预测。在中国A股市场真实数据集上的实验结果表明,相较于已有的股票预测方法,所提模型预测性能有所提升;如与GRU网络相比,所提模型在ACC和F1_score上的相对增幅分别为9.74%和8.13%,且更具有稳定性。此外,模拟回测结果显示,基于该模型的交易策略更具获利能力,年回报率达到11.30%,与长短期记忆(LSTM)网络相比提高了5个百分点。

    图表 | 参考文献 | 相关文章 | 多维度评价
    19. 基于节点-属性二部图的网络表示学习模型
    周乐, 代婷婷, 李淳, 谢军, 楚博策, 李峰, 张君毅, 刘峤
    《计算机应用》唯一官方网站    2022, 42 (8): 2311-2318.   DOI: 10.11772/j.issn.1001-9081.2021060972
    摘要321)   HTML94)    PDF (843KB)(291)    收藏

    在图结构数据上开展推理计算是一项重大的任务,该任务的主要挑战是如何表示图结构知识使机器可以快速理解并利用图数据。对比现有表示学习模型发现,基于随机游走方法的表示学习模型容易忽略属性对节点关联关系的特殊作用,因此提出一种基于节点邻接关系与属性关联关系的混合随机游走方法。首先通过邻接节点间的共同属性分布计算属性权重,并获取节点到每个属性的采样概率;然后分别从邻接节点与含有共有属性的非邻接节点中提取网络信息;最后构建基于节点-属性二部图的网络表示学习模型,并通过上述采样序列学习得到节点向量表达。在Flickr、BlogCatalog、Cora公开数据集上,用所提模型得到的节点向量表达进行节点分类的Micro-F1平均准确率为89.38%,比GraphRNA(Graph Recurrent Networks with Attributed random walks)高出了2.02个百分点,比经典工作DeepWalk高出了21.12个百分点;同时,对比不同随机游走方法发现,提高对节点关联有促进作用的属性的采样概率可以增加采样序列所含信息。

    图表 | 参考文献 | 相关文章 | 多维度评价
    20. 基于Sobol序列和纵横交叉策略的麻雀搜索算法
    段玉先, 刘昌云
    《计算机应用》唯一官方网站    2022, 42 (1): 36-43.   DOI: 10.11772/j.issn.1001-9081.2021010187
    摘要308)   HTML17)    PDF (771KB)(163)    收藏

    针对麻雀搜索算法(SSA)容易陷入局部最优、收敛速度较慢等问题,提出一种基于Sobol序列和纵横交叉策略的麻雀搜索算法(SSASC)。首先,在初始化阶段引入类随机采样方法中的Sobol序列,以增强种群的多样性和遍历性;其次,提出一种指数形式的非线性惯性权重,从而提高算法的收敛效率;最后,应用纵横交叉策略对算法进行改进,即利用横向交叉增强全局搜索能力,利用纵向交叉保持种群的多样性并防止算法陷入局部最优。选取了13个基准函数进行仿真实验,同时使用Wilcoxon秩和检验和Friedman检验评价算法的性能。在与其他元启发式算法的对比实验中,将基准函数从10维扩展到100维,SSASC在平均值和标准差处始终优于其他算法。实验结果表明,该算法在收敛速度和求解准确度方面均取得了一定的优势。

    图表 | 参考文献 | 相关文章 | 多维度评价
    21. 注入注意力机制的深度特征融合新闻推荐模型
    刘羽茜, 刘玉奇, 张宗霖, 卫志华, 苗冉
    《计算机应用》唯一官方网站    2022, 42 (2): 426-432.   DOI: 10.11772/j.issn.1001-9081.2021050907
    摘要296)   HTML45)    PDF (755KB)(176)    收藏

    现有新闻推荐模型在挖掘新闻特征和用户特征时,往往没有考虑所浏览新闻之间的关系、时序变化以及不同新闻对用户的重要性,从而缺乏全面性;同时,现有模型在新闻更细粒度的内容特征挖掘方面有欠缺。因此构建了一个能够全面而不冗余地进行用户表征并能提取新闻更细粒度片段特征的新闻推荐模型——注入注意力机制的深度特征融合新闻推荐模型。该模型首先采用基于深度学习的方法,通过注入注意力机制的卷积神经网络(CNN)对新闻文本特征矩阵进行深度提取;然后,通过对用户已经浏览的新闻添加时序预测,并注入多头自注意力机制,来提取用户的兴趣特征;最后,使用真实的中文数据集与英文数据集,以收敛时间、平均值倒数秩(MRR)和归一化折现累积收益(nDCG)为指标进行实验。与基于多头自注意力的神经网络新闻推荐(NRMS)模型等进行对比,该模型在中文数据集上nDCG的提升率为-0.22%~4.91%,MRR的提升率为-0.82%~3.48%,而且,与唯一为负提升率的模型相比,收敛时间缩短7.63%;在英文数据集上该模型在nDCG和MRR上的提升率分别为0.07%~1.75%与0.03%~1.30%,且该模型始终具有较快的收敛速度。消融实验的结果表明增加注意力机制与时序模块是有效的。

    图表 | 参考文献 | 相关文章 | 多维度评价
    22. 基于注意力机制的多尺度残差UNet实现乳腺癌灶分割
    罗圣钦, 陈金怡, 李洪均
    《计算机应用》唯一官方网站    2022, 42 (3): 818-824.   DOI: 10.11772/j.issn.1001-9081.2021040948
    摘要288)   HTML21)    PDF (1860KB)(75)    收藏

    针对乳腺癌灶在磁共振成像(MRI)中呈现大小形状不一、边界模糊等特点,为避免误分割并提高分割精度,提出一种基于注意力机制的多尺度残差UNet分割算法。首先,利用多尺度残差单元替换UNet在下采样过程中的相邻两个卷积块以加强对形态大小差异的关注;接着,在上采样阶段使用跨层的注意力引导网络对重点区域的关注,避免造成对健康组织的误分割;最后,引入空洞空间金字塔池化作为分割网络的桥接模块以强化对病灶的表征能力。与UNet相比,所提算法在Dice系数、交并比(IoU)、特异度(SP)、准确度(ACC)等指标上分别提升了2.26、2.11、4.16、0.05个百分点。实验结果表明,所提算法能够提高癌灶分割精度,有效降低影像诊断的假阳性率。

    图表 | 参考文献 | 相关文章 | 多维度评价
    23. 基于事件表示的机器阅读理解模型
    王元龙, 刘晓敏, 张虎
    《计算机应用》唯一官方网站    2022, 42 (7): 1979-1984.   DOI: 10.11772/j.issn.1001-9081.2021050719
    摘要282)   HTML66)    PDF (916KB)(258)    收藏

    要真正理解一段语篇,在阅读理解过程对原文主旨线索的把握是非常重要的。针对机器阅读理解中主旨线索类型的问题,提出了基于事件表示的机器阅读理解分析方法。首先,通过线索短语从阅读材料中抽取篇章事件图,其中包括事件的表示、事件要素的抽取和事件关系的抽取等;然后,综合考虑事件的时间要素、情感要素以及每个词在文档中的重要性,采用TextRank算法选出线索相关的事件;最后,依据所选出的线索事件构建问题的答案。在收集了339道线索类题组成的测试集上,实验结果表明所提方法在BLEU和CIDEr评价指标上与基于TextRank算法的句子排序方法相比均有所提升,具体来说,BLEU-4指标提升了4.1个百分点,CIDEr指标提升了9个百分点。

    图表 | 参考文献 | 相关文章 | 多维度评价
    24. 基于改进YOLOv4的轻量化目标检测算法
    钟志峰, 夏一帆, 周冬平, 晏阳天
    《计算机应用》唯一官方网站    2022, 42 (7): 2201-2209.   DOI: 10.11772/j.issn.1001-9081.2021050734
    摘要279)   HTML6)    PDF (5719KB)(260)    收藏

    针对当前YOLOv4目标检测网络结构复杂、参数多、训练所需的配置高以及实时检测每秒传输帧数(FPS)低的问题,提出一种基于YOLOv4的轻量化目标检测算法ML-YOLO。首先,用MobileNetv3结构替换YOLOv4的主干特征提取网络,从而通过MobileNetv3中的深度可分离卷积大幅减少主干网络的参数量;然后,用简化的加权双向特征金字塔网络(Bi-FPN)结构替换YOLOv4的特征融合网络,从而用Bi-FPN中的注意力机制提高目标检测精度;最后,通过YOLOv4的解码算法来生成最终的预测框,并实现目标检测。在VOC2007数据集上的实验结果表明,ML-YOLO算法的平均准确率均值(mAP)达到80.22%,与YOLOv4算法相比降低了3.42个百分点,与YOLOv5m算法相比提升了2.82个百分点;而ML-YOLO算法的模型大小仅为44.75 MB,与YOLOv4算法相比减小了199.54 MB,与YOLOv5m算法相比,只高了2.85 MB。实验结果表明,所提的ML-YOLO模型,一方面较YOLOv4模型大幅减小了模型大小,另一方面保持了较高的检测精度,表明该算法可以满足移动端或者嵌入式设备进行目标检测的轻量化和准确性需求。

    图表 | 参考文献 | 相关文章 | 多维度评价
    25.

    基于区块链的联邦学习研究进展

    孙睿 李超 王伟 童恩栋 王健 刘吉强
    《计算机应用》唯一官方网站    DOI: 10.11772/j.issn.1001-9081.2021111934
    录用日期: 2022-01-19

    26. 面向期限感知分布式矩阵相乘的高效存储方案
    赵永柱, 黎卫东, 唐斌, 梅峰, 卢文达
    《计算机应用》唯一官方网站    2020, 40 (2): 311-315.   DOI: 10.11772/j.issn.1001-9081.2019091640
    摘要273)   HTML11)    PDF (742KB)(450)    收藏

    分布式矩阵相乘是众多分布式机器学习、科学计算等应用中的关键操作,但其性能会受到系统中常见的落后节点的严重影响。最近研究者提出了基于喷泉码的编码矩阵相乘方法,能够充分利用落后节点的部分计算结果,从而大幅度减轻落后节点问题,但忽略了工作节点的存储开销。在考虑存储开销与计算完成时间之间的权衡关系的基础上,首先提出了面向异构工作节点的计算期限感知的存储优化问题;然后进一步通过理论分析,提出了基于期望近似的解决思路,并通过松弛将问题转化为凸优化问题以方便高效求解。仿真实验表明,在保证较大的任务成功率的情况下,所提方案的存储开销会随着任务期限的放宽迅速下降,并且该方案能够更大幅度降低编码带来的存储开销。也就是说,所提方案能够在保障整体计算在期限内大概率完成的前提下,大幅度降低总体的额外存储负载。

    图表 | 参考文献 | 相关文章 | 多维度评价
    27. 基于Siamese-YOLOv4的印刷品缺陷目标检测
    楼豪杰, 郑元林, 廖开阳, 雷浩, 李佳
    《计算机应用》唯一官方网站    2021, 41 (11): 3206-3212.   DOI: 10.11772/j.issn.1001-9081.2020121958
    摘要266)   HTML18)    PDF (1573KB)(121)    收藏

    在印刷工业生产中,针对直接使用YOLOv4网络进行印刷缺陷目标检测精度低、所需训练样本数量大的问题,提出了一种基于Siamese-YOLOv4的印刷品缺陷目标检测方法。首先,使用了一种图像分割和随机参数变化的策略对数据集进行增强;然后,在主干网络中增加了孪生相似性检测网络,并在相似性检测网络中引入Mish激活函数来计算出图像块的相似度,在此之后将相似度低于阈值的区域作为缺陷候选区域;最后,训练候选区域图像,从而实现缺陷目标的精确定位与分类。实验结果表明:Siamese-YOLOv4模型的检测精度优于主流的目标检测模型,在印刷缺陷数据集上,Siamese-YOLOv4网络对卫星墨滴缺陷的检测准确率为98.6%,对脏点缺陷的检测准确率为97.8%,对漏印缺陷的检测准确率为93.9%;检测的平均精度均值(mAP)达到了96.8%,相较于YOLOv4算法、Faster R-CNN算法、SSD算法、EfficientDet算法分别提高了6.5个百分点、6.4个百分点、14.9个百分点、10.6个百分点。所提Siamese-YOLOv4模型一方面在印刷品缺陷检测中有较低的误检率和漏检率,另一方面通过相似性检测网络计算图像块的相似度从而提高了检测的精度,表明所提缺陷检测方法可应用于印刷质检以提高印刷企业的缺陷检测水平。

    图表 | 参考文献 | 相关文章 | 多维度评价
    28. 知识图谱增强的科普文本分类模型
    唐望径, 许斌, 仝美涵, 韩美奂, 王黎明, 钟琦
    《计算机应用》唯一官方网站    2022, 42 (4): 1072-1078.   DOI: 10.11772/j.issn.1001-9081.2021071278
    摘要264)   HTML26)    PDF (1056KB)(150)    收藏

    科普文本分类是将科普文章按照科普分类体系进行划分的任务。针对科普文章篇幅超过千字,模型难以聚焦关键信息,造成传统模型分类性能不佳的问题,提出一种结合知识图谱进行两级筛选的科普长文本分类模型,来减少主题无关信息的干扰,提升模型的分类性能。首先,采用四步法构建科普领域的知识图谱;然后,将该知识图谱作为距离监督器,并通过训练句子过滤器来过滤掉无关信息;最后,使用注意力机制对过滤后的句子集做进一步的信息筛选,并实现基于注意力的主题分类模型。在所构建的科普文本分类数据集(PSCD)上的实验结果表明,基于领域知识图谱的知识增强的文本分类算法模型具有更高的F1-Score,相较于TextCNN模型和BERT模型,在F1-Score上分别提升了2.88个百分点和1.88个百分点,验证了知识图谱对于长文本信息筛选的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    29. 用于短文本情感分类的多头注意力记忆网络
    邓钰, 李晓瑜, 崔建, 刘齐
    《计算机应用》唯一官方网站    2021, 41 (11): 3132-3138.   DOI: 10.11772/j.issn.1001-9081.2021010040
    摘要262)   HTML22)    PDF (681KB)(161)    收藏

    随着社交网络的发展,对其包含的海量文本进行情感分析具有重要的社会价值。不同于普通文本分类,短文本情感分类需要挖掘隐含的情感语义特征,具有极大的难度和挑战性。为了能在更高的层次上得到短文本的情感语义特征,提出了一种多头注意力记忆网络(MAMN)用于短文本情感分类。首先,利用n元语法特征信息和有序神经元长短时记忆(ON-LSTM)网络对多头自注意力机制进行改进,以对文本上下文内联关系进行充分提取,使模型可以获得更丰富的文本特征信息。然后,利用多头注意力机制对多跳记忆网络的结构进行优化,使得在拓展模型深度的同时,挖掘更高层次的上下文内联情感语义关系。在电影评论集(MR)、斯坦福情感树(SST)-1和SST-2这三个不同的数据集上进行了大量实验。实验结果表明,与基于循环神经网络(RNN)和卷积神经网络(CNN)结构的基线模型以及一些最新成果相比,所提MAMN取得了较优的分类效果,验证了多跳结构对于性能改善的重要作用。

    图表 | 参考文献 | 相关文章 | 多维度评价
    30. 融合多粒度社区信息的网络嵌入方法
    胡军, 许正康, 刘立, 钟福金
    《计算机应用》唯一官方网站    2022, 42 (3): 663-670.   DOI: 10.11772/j.issn.1001-9081.2021040790
    摘要261)   HTML54)    PDF (758KB)(233)    收藏

    现有大多数网络嵌入方法仅保留了网络的局部结构信息,而忽略了网络中的其他潜在信息。为了保留网络的社区信息,并体现网络社区结构的多粒度特性,提出一种融合多粒度社区信息的网络嵌入方法(EMGC)。首先,获得网络的多粒度社区结构,并初始化节点嵌入和社区嵌入;然后,根据上一粒度上的节点嵌入和本层粒度的社区结构,更新社区嵌入,进而调整相应的节点嵌入;最后,对不同粒度下的节点嵌入进行拼接,从而得到融合多粒度社区信息的网络嵌入结果。在4个真实网络数据集上进行实验,相较于未考虑社区信息的方法(DeepWalk、node2vec)和考虑了单一粒度社区信息的方法(ComE、GEMSEC),EMGC在链接预测上的AUC值和节点分类上的F1值总体上优于对比方法。实验结果表明EMGC能够有效提升后续链接预测和节点分类的准确率。

    图表 | 参考文献 | 相关文章 | 多维度评价
    31. 基于多模态深度融合的虚假信息检测
    孟杰, 王莉, 杨延杰, 廉飚
    《计算机应用》唯一官方网站    2022, 42 (2): 419-425.   DOI: 10.11772/j.issn.1001-9081.2021071184
    摘要252)   HTML36)    PDF (1079KB)(155)    收藏

    针对虚假信息检测中图片特征提取不充分,以及忽视了单模内关系以及单模与多模之间交互作用的问题,提出一种基于文本和图片信息的多模态深度融合(MMDF)模型。首先,用双向门控循环单元(Bi-GRU)提取文本的丰富语义特征,用多分支卷积-循环神经网络(CNN-RNN)提取图片的多层次特征;然后,建立模间和模内的注意力机制以捕获语言和视觉领域之间的高层交互,并得到多模态的联合表征;最后,将各模态原表征与融合后的多模态联合表征依据注意力权重进行再融合,以加强原信息的作用。该模型与多模态变分自动编码器(MVAE)模型相比,在中国计算机学会(CCF)竞赛和微博数据集上的准确率分别提升了1.9个百分点和2.4个百分点。实验结果表明,所提模型能够充分融合多模态信息,有效提高虚假信息检测的准确率。

    图表 | 参考文献 | 相关文章 | 多维度评价
    32. 基于BERT的初等数学文本命名实体识别方法
    张毅, 王爽胜, 何彬, 叶培明, 李克强
    《计算机应用》唯一官方网站    2022, 42 (2): 433-439.   DOI: 10.11772/j.issn.1001-9081.2021020334
    摘要251)   HTML27)    PDF (689KB)(265)    收藏

    在初等数学领域的命名实体识别(NER)中,针对传统命名实体识别方法中词嵌入无法表征一词多义以及特征提取过程中忽略部分局部特征的问题,提出一种基于BERT的初等数学文本命名实体识别方法——BERT-BiLSTM-IDCNN-CRF。首先,采用BERT进行预训练,然后将训练得到的词向量输入到双向长短期记忆(BiLSTM)网络与迭代膨胀卷积网络(IDCNN)中提取特征,再将两种神经网络输出的特征进行合并,最后经过条件随机场(CRF)修正后进行输出。实验结果表明:BERT-BiLSTM-IDCNN-CRF在初等数学试题数据集上的F1值为93.91%,相较于BiLSTM-CRF基准方法的F1值提升了4.29个百分点,相较于BERT-BiLSTM-CRF方法的F1值提高了1.23个百分点;该方法对线、角、面、数列等实体识别的F1值均高于91%,验证了该方法对初等数学实体识别的有效性。此外,在所提方法的基础上结合注意力机制后,该方法的召回率下降了0.67个百分点,但准确率上升了0.75个百分点,注意力机制的引入对所提方法的识别效果提升不大。

    图表 | 参考文献 | 相关文章 | 多维度评价
    33. 元学习的不确定性特征构建及初步分析
    李艳, 郭劼, 范斌
    《计算机应用》唯一官方网站    2022, 42 (2): 343-348.   DOI: 10.11772/j.issn.1001-9081.2021071198
    摘要251)   HTML65)    PDF (483KB)(154)    收藏

    元学习即应用机器学习的方法(元算法)寻求问题的特征(元特征)与算法相对性能测度间的映射,从而形成元知识的学习过程,如何构建和提取元特征是其重要的研究内容。针对目前相关研究所用到的元特征大部分是数据的统计特征的问题,提出不确定性建模并研究不确定性对于学习系统的影响。根据样本的不一致性、边界的复杂性、模型输出的不确定性、线性可分度、属性的重叠度以及特征空间的不确定性,建立了六种数据或模型的不确定性元特征;同时,从不同角度衡量学习问题本身的不确定性大小,并给出了具体的定义。在大量分类问题的人工数据和真实数据集上实验分析了这些元特征之间的相关性,并使用K最近邻(KNN)等多个分类算法对元特征与测试精度之间的相关度进行初步分析。结果表明相关度平均在0.8左右,可见这些元特征对学习性能具有显著影响。

    图表 | 参考文献 | 相关文章 | 多维度评价
    34. 新型算力网络架构及其应用案例分析
    狄筝, 曹一凡, 仇超, 罗韬, 王晓飞
    《计算机应用》唯一官方网站    2022, 42 (6): 1656-1661.   DOI: 10.11772/j.issn.1001-9081.2021061497
    摘要246)   HTML26)    PDF (1584KB)(120)    收藏

    随着人工智能(AI)算力向网络边缘甚至终端设备扩散,端边云超协同的算力网络成为最佳计算解决方案,而新机遇催生了端边云超计算和网络之间的深度集成。然而,集成系统的完整开发还没有得到很好的解决,包括适应性、灵活性和价值性,因此提出了一种区块链赋能的端边云超算力网络架构。其中,端边云超融合为框架提供基础设施,该设施构成的算力资源池为用户提供安全可靠的算力,网络通过调度资源满足用户需求,而框架内的神经网络和执行平台为AI任务执行提供接口;同时,区块链保证资源交易的可靠性,以激励更多算力贡献者加入平台。本框架为算力网络中的用户提供了适应性,为组网算力资源调度提供了灵活性,为算力供应商提供了价值激励,并利用案例清晰地描述了该新型算力网络架构。

    图表 | 参考文献 | 相关文章 | 多维度评价
    35. 基于卷积神经网络交互的用户属性偏好建模的推荐模型
    潘仁志, 钱付兰, 赵姝, 张燕平
    《计算机应用》唯一官方网站    2022, 42 (2): 404-411.   DOI: 10.11772/j.issn.1001-9081.2021041070
    摘要246)   HTML32)    PDF (633KB)(168)    收藏

    潜在因子模型(LFM)以其优异的性能在推荐领域得到了广泛应用。在LFM中除了使用交互数据以外,辅助信息也被引入用于解决数据稀疏的问题,从而提升推荐的性能。然而,大多数LFM仍然存在一些问题:第一,LFM在对用户进行建模时,忽略了用户如何根据其特征偏好对项目作出决策;第二,采用内积的特征交互假设特征维度之间是相互独立的,而没有考虑到特征维度之间的关联。针对上述问题,提出一种新的推荐模型:基于卷积神经网络(CNN)交互的用户属性偏好建模的推荐模型(UAMC)。该模型首先获得用户的一般偏好、用户属性和项目嵌入,然后将用户属性和项目嵌入进行交互,以探索用户不同的属性对不同项目的偏好;接着将交互过的用户偏好属性送入CNN层来探索不同偏好属性的不同维度的关联,从而得到用户的属性偏好向量;接着使用注意力机制结合用户的一般偏好和CNN层得到的属性偏好,从而获得用户的向量表示;最后采用点积来计算用户对项目的评分。在Movielens-100K、Movielens-1M和Book-crossing这三个真实的数据集上进行了实验。实验结果表明,所提模型在均方根误差(RMSE)上与稀疏数据预测的神经网络分解机(NFM)模型相比分别降低了1.75%、2.78%和0.25%,验证了在LFM的评分预测推荐中,UAMC在提升推荐精度上的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    36. 基于小样本无梯度学习的卷积结构预训练模型性能优化方法
    李亚鸣, 邢凯, 邓洪武, 王志勇, 胡璇
    《计算机应用》唯一官方网站    2022, 42 (2): 365-374.   DOI: 10.11772/j.issn.1001-9081.2021020230
    摘要244)   HTML44)    PDF (841KB)(301)    收藏

    针对卷积结构的深度学习模型在小样本学习场景中泛化性能较差的问题,以AlexNet和ResNet为例,提出一种基于小样本无梯度学习的卷积结构预训练模型的性能优化方法。首先基于因果干预对样本数据进行调制,由非时序数据生成序列数据,并基于协整检验从数据分布平稳性的角度对预训练模型进行定向修剪;然后基于资本资产定价模型(CAPM)以及最优传输理论,在预训练模型中间输出过程中进行无需梯度传播的正向学习并构建一种全新的结构,从而生成在分布空间中具有明确类间区分性的表征向量;最后基于自注意力机制对生成的有效特征进行自适应加权处理,并在全连接层对特征进行聚合,从而生成具有弱相关性的embedding向量。实验结果表明所提出的方法能够使AlexNet和ResNet卷积结构预训练模型在ImageNet 2012数据集的100类图片上的Top-1准确率分别从58.82%、78.51%提升到68.50%、85.72%,可见所提方法能够基于小样本训练数据有效提高卷积结构预训练模型的性能。

    图表 | 参考文献 | 相关文章 | 多维度评价
    37. 求解工程约束问题的新型智能优化算法及展望
    张孟健, 王德光, 汪敏, 杨靖
    《计算机应用》唯一官方网站    2022, 42 (2): 534-541.   DOI: 10.11772/j.issn.1001-9081.2021020265
    摘要240)   HTML29)    PDF (849KB)(220)    收藏

    为了研究新型智能优化算法的性能和应用前景,选择了近几年提出的6种仿生智能优化算法:哈里斯鹰优化(HHO)算法、平衡优化(EO)算法、海洋捕食者算法(MPA)、政治优化(PO)算法、黏液霉菌算法(SMA)和堆阵优化(HBO)算法,对其性能和在不同带约束的工程优化问题上的应用进行对比分析。首先,对6种优化算法的基本原理进行介绍;然后,用6种优化算法对10个基准测试函数进行寻优测试;接着,将6种优化算法用于求解3种带约束的工程优化问题。实验结果表明,对于单峰和多峰测试函数的寻优,PO的收敛精度最佳,能够多次达到理论最优值0,且收敛速度较快;对于求解工程约束问题,EO和MPA较好,因为的标准差的数量级较小,且寻优速度较快,稳定性高。最后,分析了6种优化算法的改进方法及其发展潜力。

    图表 | 参考文献 | 相关文章 | 多维度评价
    38. 利用初始残差和解耦操作的自适应深层图卷积
    张继杰, 杨艳, 刘勇
    《计算机应用》唯一官方网站    2022, 42 (1): 9-15.   DOI: 10.11772/j.issn.1001-9081.2021071289
    摘要230)   HTML36)    PDF (648KB)(174)    收藏

    传统的图卷积网络(GCN)及其很多变体都是在浅层时达到最佳的效果,而没有充分利用图中节点的高阶邻居信息。随后产生的深层图卷积模型可以解决以上问题却又不可避免地产生了过平滑的问题,导致模型无法有效区分图中不同类别的节点。针对此问题,提出了一种利用初始残差和解耦操作的自适应深层图卷积模型ID-AGCN。首先,对节点的表示转换以及特征传播进行解耦;然后,在节点的特征传播过程中添加了初始残差;最后,自适应地结合不同传播层得到的节点表示,针对每个节点选择其合适的局部信息和全局信息以得到含有丰富信息的节点表征,并利用少部分带标签的节点进行监督训练来生成最终的节点表征。在Cora、CiteSeer和PubMed这三个数据集上的实验结果表明,ID-AGCN的分类准确率相较GCN分别提高了约3.4个百分点、2.3个百分点和1.9个百分点。所提模型能够更好地缓解过平滑。

    图表 | 参考文献 | 相关文章 | 多维度评价
    39. 基于总变分低秩组稀疏的全球雷达数据修复算法
    葛晨宇, 董良, 许伊昆, 常毅, 张宏鸣
    《计算机应用》唯一官方网站    2021, 41 (11): 3353-3361.   DOI: 10.11772/j.issn.1001-9081.2020122047
    摘要226)   HTML9)    PDF (3343KB)(186)    收藏

    针对航天飞机雷达地形测绘任务(SRTM)中存在由大量尖峰、斑点和多向条纹误差形成的混合噪声对后续应用产生严重干扰的问题,提出了一种基于总变分约束的低秩组稀疏(LRGS_TV)算法。首先,利用数据在局部范围低秩方向上的唯一性来正则化全局多方向条带误差结构,同时使用变分思想进行单向约束;其次,使用加权核范数的非局部自相似性来消除随机噪声,并结合总变分(TV)正则对数据梯度进行约束,以减小局部范围变化差值;最后,使用交替方向乘子优化对低秩组稀疏模型进行求解,从而保证了模型的收敛性。把所提算法与TV、单方向总变分(UTV)、低秩单图像分解(LRSID)和低秩组稀疏(LRGS)模型这4种算法进行定量评估的结果表明,LRGS_TV的峰值信噪比(PSNR)可以达到38.53 dB,结构相似性(SSIM)可以达到0.97,均为5种算法中的最优。同时,坡度与坡向结果表明,经LRGS_TV处理后,数据的后续应用有显著改善。实验结果表明,LRGS_TV能够在保证地形轮廓特征基本不变的情况下更好地修复原始数据,可对SRTM可靠性的提高与后续应用提供重要的支持。

    图表 | 参考文献 | 相关文章 | 多维度评价
    40. 基于中心核对齐的多核单类支持向量机
    祁祥洲, 邢红杰
    《计算机应用》唯一官方网站    2022, 42 (2): 349-356.   DOI: 10.11772/j.issn.1001-9081.2021071230
    摘要225)   HTML46)    PDF (608KB)(164)    收藏

    多核学习(MKL)方法在分类及回归任务中均取得了优于单核学习方法的性能,但传统的MKL方法均用于处理两类或多类分类问题。为了使MKL方法适用于处理单类分类(OCC)问题,提出了基于中心核对齐(CKA)的单类支持向量机(OCSVM)。首先利用CKA计算每个核矩阵的权重,然后将所得权重用作线性组合系数,进而将不同类型的核函数加以线性组合以构造组合核函数,最后将组合核函数引入到传统OCSVM中代替单个核函数。该方法既能避免核函数的选取问题,又能提高泛化性能和抗噪声能力。在20个UCI基准数据集上与其他五种相关方法进行了实验比较,结果表明该方法在13个数据集上的几何均值(g-mean)均高于其他对比方法,而传统的单核OCSVM仅在2个数据集上的效果较好,局部多核单类支持向量机(LMKOCSVM)和基于核目标对齐的多核单类支持向量机(KTA-MKOCSVM)在5个数据集上的分类效果较好。因此,通过实验比较充分验证了所提方法的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
2022年 42卷 9期
刊出日期: 2022-09-10
文章目录
过刊浏览
荣誉主编:张景中
主  编:徐宗本
副主编
:申恒涛 夏朝晖

国内邮发代号:62-110
国外发行代号:M4616
地址:四川成都双流区四川天府新区
   兴隆街道科智路1369号
   中科信息(科学城园区) B213
   (计算机应用编辑部)
电话:028-85224283-803
   028-85222239-803
网址:www.joca.cn
E-mail: bjb@joca.cn
期刊微信公众号
CCF扫码入会