摘要点击排行

    一年内发表文章 |  两年内 |  三年内 |  全部

    当前位置: 全部
    Please wait a minute...
    选择: 显示/隐藏图片
    1. 联邦学习综述:概念、技术、应用与挑战
    梁天恺, 曾碧, 陈光
    《计算机应用》唯一官方网站    2022, 42 (12): 3651-3662.   DOI: 10.11772/j.issn.1001-9081.2021101821
    摘要968)   HTML13)    PDF (2464KB)(603)    收藏

    在强调数据确权以及隐私保护的时代背景下,联邦学习作为一种新的机器学习范式,能够在不暴露各方数据的前提下达到解决数据孤岛以及隐私保护问题的目的。目前,基于联邦学习的建模方法已成为主流并且获得了很好的效果,因此对联邦学习的概念、技术、应用和挑战进行总结与分析具有重要的意义。首先,阐述了机器学习的发展历程以及联邦学习出现的必然性,并给出联邦学习的定义与分类;其次,介绍并分析了目前业界认可的三种联邦学习方法:横向联邦学习、纵向联邦学习和联邦迁移学习;然后,针对联邦学习的隐私保护问题,归纳并总结了目前常见的隐私保护技术;此外,还对联邦学习的现有主流开源框架进行了介绍与对比,同时给出了联邦学习的应用场景;最后,展望了联邦学习所面临的挑战和未来的研究方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    2. 基于多重注意力机制的图神经网络股市波动预测方法
    李晓寒, 王俊, 贾华丁, 萧刘
    《计算机应用》唯一官方网站    2022, 42 (7): 2265-2273.   DOI: 10.11772/j.issn.1001-9081.2021081487
    摘要564)   HTML11)    PDF (2246KB)(198)    收藏

    股票市场是金融市场关键组成部分,因此对股票市场波动的研究对合理化控制金融市场风险、提高投资收益提供了重要支持,一直以来都是学术界和相关业界的关注焦点,然而,股票市场会受到各种因素的影响。面对股票市场中多源化、异构化的信息,如何高效挖掘、融合股票市场的多源异构数据具有挑战性。为了充分解释不同信息及信息间相互作用对于股票市场价格波动的影响,提出一种基于多重注意力机制的图神经网络来预测股票市场的价格波动。首先,引入关系维度构建股票市场交易数据和新闻文本的异构子图,并利用多重注意力机制实现图数据的融合;其次,通过图神经网络门控循环单元(GRU)进行图分类,在此基础上完成对股票市场中上证综合指数、沪深300指数、深证成份指数这三个重要指数波动的预测。实验结果表明,从异构信息特性角度,相较于股票市场交易数据,股市新闻信息对于股票价格影响存在滞后性;从异构信息融合角度,所提方法与支持向量机(SVM)、随机森林、多核k-means (MKKM)聚类等算法相比,预测准确率分别提升了17.88个百分点、30.00个百分点和38.00个百分点,并进行了模型交易策略的量化投资模拟。

    图表 | 参考文献 | 相关文章 | 多维度评价
    3. 基于注意力机制的多尺度残差UNet实现乳腺癌灶分割
    罗圣钦, 陈金怡, 李洪均
    《计算机应用》唯一官方网站    2022, 42 (3): 818-824.   DOI: 10.11772/j.issn.1001-9081.2021040948
    摘要543)   HTML29)    PDF (1860KB)(144)    收藏

    针对乳腺癌灶在磁共振成像(MRI)中呈现大小形状不一、边界模糊等特点,为避免误分割并提高分割精度,提出一种基于注意力机制的多尺度残差UNet分割算法。首先,利用多尺度残差单元替换UNet在下采样过程中的相邻两个卷积块以加强对形态大小差异的关注;接着,在上采样阶段使用跨层的注意力引导网络对重点区域的关注,避免造成对健康组织的误分割;最后,引入空洞空间金字塔池化作为分割网络的桥接模块以强化对病灶的表征能力。与UNet相比,所提算法在Dice系数、交并比(IoU)、特异度(SP)、准确度(ACC)等指标上分别提升了2.26、2.11、4.16、0.05个百分点。实验结果表明,所提算法能够提高癌灶分割精度,有效降低影像诊断的假阳性率。

    图表 | 参考文献 | 相关文章 | 多维度评价
    4. 基于时序超图卷积神经网络的股票趋势预测方法
    李晓杰, 崔超然, 宋广乐, 苏雅茜, 吴天泽, 张春云
    《计算机应用》唯一官方网站    2022, 42 (3): 797-803.   DOI: 10.11772/j.issn.1001-9081.2021050748
    摘要542)   HTML33)    PDF (742KB)(269)    收藏

    传统的股票预测方法大多基于时间序列模型,忽视了股票之间复杂的关系,并且该关系往往超出成对连接,例如同行业板块内股票或者基金持仓多支股票。针对该问题,提出一种基于时序超图卷积神经网络(HGCN)的股价走势预测方法,根据金融投资事实构造超图模型以拟合股票之间的多元关系,该模型包括两大组件:门控循环单元(GRU)网络和超图卷积神经网络。GRU网络对历史数据进行时间序列建模,捕捉长期依赖关系;HGCN建模股票间的高阶关系以学习内在关系属性,从而将股票间多元关系信息引入到传统的时序建模中,进行端到端的趋势预测。在中国A股市场真实数据集上的实验结果表明,相较于已有的股票预测方法,所提模型预测性能有所提升;如与GRU网络相比,所提模型在ACC和F1_score上的相对增幅分别为9.74%和8.13%,且更具有稳定性。此外,模拟回测结果显示,基于该模型的交易策略更具获利能力,年回报率达到11.30%,与长短期记忆(LSTM)网络相比提高了5个百分点。

    图表 | 参考文献 | 相关文章 | 多维度评价
    5. 基于改进YOLOv5的安全帽佩戴检测算法
    张锦, 屈佩琪, 孙程, 罗蒙
    《计算机应用》唯一官方网站    2022, 42 (4): 1292-1300.   DOI: 10.11772/j.issn.1001-9081.2021071246
    摘要511)   HTML23)    PDF (7633KB)(286)    收藏

    针对现有安全帽佩戴检测干扰性强、检测精度低等问题,提出一种基于改进YOLOv5的安全帽检测新算法。首先,针对安全帽尺寸不一的问题,使用K-Means++算法重新设计先验框尺寸并将其匹配到相应的特征层;其次,在特征提取网络中引入多光谱通道注意力模块,使网络能够自主学习每个通道的权重,增强特征间的信息传播,从而加强网络对前景和背景的辨别能力;最后,在训练迭代过程中随机输入不同尺寸的图像,以此增强算法的泛化能力。实验结果表明,在自制安全帽佩戴检测数据集上,所提算法的均值平均精度(mAP)达到96.0%,而对佩戴安全帽的工人的平均精度(AP)达到96.7%,对未佩戴安全帽的工人的AP达到95.2%,相较于YOLOv5算法,该算法对佩戴安全帽的平均检测准确率提升了3.4个百分点,满足施工场景下安全帽佩戴检测的准确率要求。

    图表 | 参考文献 | 相关文章 | 多维度评价
    6. 二进制代码相似性搜索研究进展
    夏冰, 庞建民, 周鑫, 单征
    《计算机应用》唯一官方网站    2022, 42 (4): 985-998.   DOI: 10.11772/j.issn.1001-9081.2021071267
    摘要509)   HTML102)    PDF (841KB)(453)    收藏

    随着物联网和工业互联网的快速发展,网络空间安全的研究日益受到工业界和学术界的重视。由于源代码无法获取,二进制代码相似性搜索成为漏洞挖掘和恶意代码分析的关键核心技术。首先,从二进制代码相似性搜索基本概念出发,给出二进制代码相似性搜索系统框架;然后,围绕相似性技术系统介绍二进制代码语法相似性搜索、语义相似性搜索和语用相似性搜索的发展现状;其次,从二进制哈希、指令序列、图结构、基本块语义、特征学习、调试信息恢复和函数高级语义识别等角度总结比较现有解决方案;最后,展望二进制代码相似性搜索未来发展方向与前景。

    图表 | 参考文献 | 相关文章 | 多维度评价
    7. 基于多尺度卷积和注意力机制的LSTM时间序列分类
    玄英律, 万源, 陈嘉慧
    《计算机应用》唯一官方网站    2022, 42 (8): 2343-2352.   DOI: 10.11772/j.issn.1001-9081.2021061062
    摘要508)   HTML44)    PDF (711KB)(269)    收藏

    时间序列的多尺度特征包含丰富的类别信息,且这些信息对分类具有不同的重要程度,然而现有的单变量时间序列分类模型通常以固定大小的卷积核提取序列特征,导致不能有效地获取并聚焦重要的多尺度特征。针对上述问题,提出一种基于多尺度卷积和注意力机制(MCA)的长短时记忆(LSTM)模型(MCA-LSTM),它能够关注并融合重要的多尺度特征,从而实现更准确的分类。其中,LSTM使用记忆细胞和门机制控制序列信息的传递,并充分提取时间序列的相关性信息;多尺度卷积模块(MCM)使用具有不同卷积核的卷积神经网络(CNN)提取序列的多尺度特征;注意力模块(AM)融合通道信息获取特征的重要性并分配注意力权重,从而使网络关注重要的时间序列特征。在UCR档案的65个单变量时间序列数据集上的实验结果表明,对比当前最先进的基于深度学习的时间序列分类模型:USRL-FordA(Unsupervised Scalable Representation Learning-FordA)、USRL-Combined (1-NN) (Unsupervised Scalable Representation Learning-Combined (1-Nearest Neighbor)) OS-CNN(Omni-Scale Convolutional Neural Network)、Inception-Time和RTFN(Robust Temporal Feature Network for time series classification),MCA-LSTM在平均错误率(ME)上分别降低了7.48、9.92、2.43、2.09和0.82个百分点,并取得了最高的算术平均排名(AMR)和几何平均排名(GMR),分别为2.14和3.23,这些充分体现了MCA-LSTM模型在单变量时间序列分类中的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    8. 不平衡多分类算法综述
    李蒙蒙, 刘艺, 李庚松, 郑奇斌, 秦伟, 任小广
    《计算机应用》唯一官方网站    2022, 42 (11): 3307-3321.   DOI: 10.11772/j.issn.1001-9081.2021122060
    摘要490)   HTML62)    PDF (1861KB)(356)    收藏

    不平衡数据分类是机器学习领域的重要研究内容,但现有的不平衡分类算法通常针对不平衡二分类问题,关于不平衡多分类的研究相对较少。然而实际应用中的数据集通常具有多类别且数据分布具有不平衡性,而类别的多样性进一步加剧了不平衡数据的分类难度,因此不平衡多分类问题已经成为亟待解决的研究课题。针对近年来提出的不平衡多分类算法展开综述,根据是否采用分解策略把不平衡多分类算法分为分解方法和即席方法,并进一步将分解方法按照分解策略的不同划分为“一对一(OVO)”架构和“一对多(OVA)”架构,将即席方法按照处理技术的不同分为数据级方法、算法级方法、代价敏感方法、集成方法和基于深度网络的方法。系统阐述各类方法的优缺点及其代表性算法,总结概括不平衡多分类方法的评价指标,并通过实验深入分析代表性方法的性能,讨论了不平衡多分类的未来发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    9. 基于卷积神经网络的图像分类算法综述
    季长清, 高志勇, 秦静, 汪祖民
    《计算机应用》唯一官方网站    2022, 42 (4): 1044-1049.   DOI: 10.11772/j.issn.1001-9081.2021071273
    摘要470)   HTML45)    PDF (605KB)(327)    收藏

    卷积神经网络(CNN)是目前基于深度学习的计算机视觉领域中重要的研究方向之一。它在图像分类和分割、目标检测等的应用中表现出色,其强大的特征学习与特征表达能力越来越受到研究者的推崇。然而,CNN仍存在特征提取不完整、样本训练过拟合等问题。针对这些问题,介绍了CNN的发展、CNN经典的网络模型及其组件,并提供了解决上述问题的方法。通过对CNN模型在图像分类中研究现状的综述,为CNN的进一步发展及研究方向提供了建议

    图表 | 参考文献 | 相关文章 | 多维度评价
    10. 基于区块链的联邦学习研究进展
    孙睿, 李超, 王伟, 童恩栋, 王健, 刘吉强
    《计算机应用》唯一官方网站    2022, 42 (11): 3413-3420.   DOI: 10.11772/j.issn.1001-9081.2021111934
    摘要466)   HTML12)    PDF (1086KB)(321)    收藏

    联邦学习(FL)是一种能够实现用户数据不出本地的新型隐私保护学习范式。随着相关研究工作的不断深入,FL的单点故障及可信性缺乏等不足之处逐渐受到重视。近年来,起源于比特币的区块链技术取得迅速发展,它开创性地构建了去中心化的信任,为FL的发展提供了一种新的可能。对现有基于区块链的FL框架进行对比分析,深入讨论区块链与FL相结合所解决的FL重要问题,并阐述了基于区块链的FL技术在物联网(IoT)、工业物联网(IIoT)、车联网(IoV)、医疗服务等多个领域的应用前景。

    图表 | 参考文献 | 相关文章 | 多维度评价
    11. 自然语言处理在文本情感分析领域应用综述
    王颖洁, 朱久祺, 汪祖民, 白凤波, 弓箭
    《计算机应用》唯一官方网站    2022, 42 (4): 1011-1020.   DOI: 10.11772/j.issn.1001-9081.2021071262
    摘要456)   HTML58)    PDF (783KB)(286)    收藏

    文本情感分析已经逐渐成为自然语言处理(NLP)的重要内容,并在系统推荐、用户情感信息获取,为政府、企业提供舆情参考等领域越来越占据重要地位。通过文献调研的方式,对情感分析领域的方法进行对比和综述。首先,从时间、方法等维度对情感分析的方法进行文献调研;然后,对情感分析的主要方法、应用场景进行归纳总结和对比;最后,在此基础上分析每种方法的优缺点。根据分析结果可以知道,在面对不同的任务场景,主要有三种情感分析的方法:基于情感字典的情感分析法、基于机器学习的情感分析法和基于深度学习的情感分析法,基于多策略混合的方法成为改进的趋势。文献调研表明,文本情感分析的技术方法还有改进的空间,在电子商务、心理治疗、舆情监控方面有较大市场和发展前景

    图表 | 参考文献 | 相关文章 | 多维度评价
    12. 基于节点-属性二部图的网络表示学习模型
    周乐, 代婷婷, 李淳, 谢军, 楚博策, 李峰, 张君毅, 刘峤
    《计算机应用》唯一官方网站    2022, 42 (8): 2311-2318.   DOI: 10.11772/j.issn.1001-9081.2021060972
    摘要456)   HTML118)    PDF (843KB)(360)    收藏

    在图结构数据上开展推理计算是一项重大的任务,该任务的主要挑战是如何表示图结构知识使机器可以快速理解并利用图数据。对比现有表示学习模型发现,基于随机游走方法的表示学习模型容易忽略属性对节点关联关系的特殊作用,因此提出一种基于节点邻接关系与属性关联关系的混合随机游走方法。首先通过邻接节点间的共同属性分布计算属性权重,并获取节点到每个属性的采样概率;然后分别从邻接节点与含有共有属性的非邻接节点中提取网络信息;最后构建基于节点-属性二部图的网络表示学习模型,并通过上述采样序列学习得到节点向量表达。在Flickr、BlogCatalog、Cora公开数据集上,用所提模型得到的节点向量表达进行节点分类的Micro-F1平均准确率为89.38%,比GraphRNA(Graph Recurrent Networks with Attributed random walks)高出了2.02个百分点,比经典工作DeepWalk高出了21.12个百分点;同时,对比不同随机游走方法发现,提高对节点关联有促进作用的属性的采样概率可以增加采样序列所含信息。

    图表 | 参考文献 | 相关文章 | 多维度评价
    13. 基于Transformer的U型医学图像分割网络综述
    傅励瑶 尹梦晓 杨锋
    《计算机应用》唯一官方网站    DOI: 10.11772/j.issn.1001-9081.2022040530
    录用日期: 2022-07-26

    14. 分布式机器学习作业性能干扰分析与预测
    李洪亮, 张弄, 孙婷, 李想
    《计算机应用》唯一官方网站    2022, 42 (6): 1649-1655.   DOI: 10.11772/j.issn.1001-9081.2021061404
    摘要411)   HTML91)    PDF (1121KB)(379)    收藏

    通过分析分布式机器学习中作业性能干扰的问题,发现性能干扰是由于内存过载、带宽竞争等GPU资源分配不均导致的,为此设计并实现了快速预测作业间性能干扰的机制,该预测机制能够根据给定的GPU参数和作业类型自适应地预测作业干扰程度。首先,通过实验获取分布式机器学习作业运行时的GPU参数和干扰率,并分析出各类参数对性能干扰的影响;其次,依托多种预测技术建立GPU参数-干扰率模型进行作业干扰率误差分析;最后,建立自适应的作业干扰率预测算法,面向给定的设备环境和作业集合自动选择误差最小的预测模型,快速、准确地预测作业干扰率。选取5种常用的神经网络作业,在两种GPU设备上设计实验并进行结果分析。结果显示,所提出的自适应干扰预测(AIP)机制能够在不提供任何预先假设信息的前提下快速完成预测模型的选择和性能干扰预测,耗时在300 s以内,预测干扰率误差在2%~13%,可应用于作业调度和负载均衡等场景。

    图表 | 参考文献 | 相关文章 | 多维度评价
    15. 知识图谱增强的科普文本分类模型
    唐望径, 许斌, 仝美涵, 韩美奂, 王黎明, 钟琦
    《计算机应用》唯一官方网站    2022, 42 (4): 1072-1078.   DOI: 10.11772/j.issn.1001-9081.2021071278
    摘要391)   HTML36)    PDF (1056KB)(192)    收藏

    科普文本分类是将科普文章按照科普分类体系进行划分的任务。针对科普文章篇幅超过千字,模型难以聚焦关键信息,造成传统模型分类性能不佳的问题,提出一种结合知识图谱进行两级筛选的科普长文本分类模型,来减少主题无关信息的干扰,提升模型的分类性能。首先,采用四步法构建科普领域的知识图谱;然后,将该知识图谱作为距离监督器,并通过训练句子过滤器来过滤掉无关信息;最后,使用注意力机制对过滤后的句子集做进一步的信息筛选,并实现基于注意力的主题分类模型。在所构建的科普文本分类数据集(PSCD)上的实验结果表明,基于领域知识图谱的知识增强的文本分类算法模型具有更高的F1-Score,相较于TextCNN模型和BERT模型,在F1-Score上分别提升了2.88个百分点和1.88个百分点,验证了知识图谱对于长文本信息筛选的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    16. 基于数据增强和弱监督对抗训练的中文事件检测
    罗萍, 丁玲, 杨雪, 向阳
    《计算机应用》唯一官方网站    2022, 42 (10): 2990-2995.   DOI: 10.11772/j.issn.1001-9081.2021081521
    摘要384)   HTML37)    PDF (720KB)(220)    收藏

    当前的事件检测模型严重依赖于人工标注的数据,在标注数据规模有限的情况下,事件检测任务中基于完全监督方法的深度学习模型经常会出现过拟合的问题,而基于弱监督学习的使用自动标注数据代替耗时的人工标注数据的方法又常常依赖于复杂的预定义规则。为了解决上述问题,就中文事件检测任务提出了一种基于BERT的混合文本对抗训练(BMAD)方法。所提方法基于数据增强和对抗学习设定了弱监督学习场景,并采用跨度抽取模型来完成事件检测任务。首先,为改善数据不足的问题,采用回译、Mix-Text等数据增强方法来增强数据并为事件检测任务创建弱监督学习场景;然后,使用一种对抗训练机制进行噪声学习,力求最大限度地生成近似真实样本的生成样本,并最终提高整个模型的鲁棒性。在广泛使用的真实数据集自动文档抽取(ACE)2005上进行实验,结果表明相较于NPN、TLNN、HCBNN等算法,所提方法在F1分数上获取了至少0.84个百分点的提升。

    图表 | 参考文献 | 相关文章 | 多维度评价
    17. 新型算力网络架构及其应用案例分析
    狄筝, 曹一凡, 仇超, 罗韬, 王晓飞
    《计算机应用》唯一官方网站    2022, 42 (6): 1656-1661.   DOI: 10.11772/j.issn.1001-9081.2021061497
    摘要376)   HTML45)    PDF (1584KB)(166)    收藏

    随着人工智能(AI)算力向网络边缘甚至终端设备扩散,端边云超协同的算力网络成为最佳计算解决方案,而新机遇催生了端边云超计算和网络之间的深度集成。然而,集成系统的完整开发还没有得到很好的解决,包括适应性、灵活性和价值性,因此提出了一种区块链赋能的端边云超算力网络架构。其中,端边云超融合为框架提供基础设施,该设施构成的算力资源池为用户提供安全可靠的算力,网络通过调度资源满足用户需求,而框架内的神经网络和执行平台为AI任务执行提供接口;同时,区块链保证资源交易的可靠性,以激励更多算力贡献者加入平台。本框架为算力网络中的用户提供了适应性,为组网算力资源调度提供了灵活性,为算力供应商提供了价值激励,并利用案例清晰地描述了该新型算力网络架构。

    图表 | 参考文献 | 相关文章 | 多维度评价
    18. 事件抽取综述
    马春明, 李秀红, 李哲, 王惠茹, 杨丹
    《计算机应用》唯一官方网站    2022, 42 (10): 2975-2989.   DOI: 10.11772/j.issn.1001-9081.2021081542
    摘要367)   HTML71)    PDF (3054KB)(268)    收藏

    将用户感兴趣的事件从非结构化信息中提取出来,然后以结构化的方式展示给用户,这就是事件抽取。事件抽取在信息收集、信息检索、文档合成、信息问答等方面有着广泛应用。从全局出发,事件抽取算法可以分为基于模式匹配的算法、触发词法、基于本体的算法以及前沿联合模型方法这四类。在研究过程中根据相关需求可使用不同评价方法和数据集,而不同的事件表示方法也与事件抽取研究有一定联系;以任务类型区分,元事件抽取和主题事件抽取是事件抽取的两大基本任务。其中,元事件抽取有基于模式匹配、基于机器学习和基于神经网络这三种方式,而主题事件抽取有基于事件框架和基于本体两种方式。事件抽取研究在中英等单语言上均已取得了优秀成果,而跨语言事件抽取依然面临着许多问题。最后,总结了事件抽取的相关工作并提出未来研究方向,以期为后续研究提供参考。

    图表 | 参考文献 | 相关文章 | 多维度评价
    19. 基于改进YOLOv4的轻量化目标检测算法
    钟志峰, 夏一帆, 周冬平, 晏阳天
    《计算机应用》唯一官方网站    2022, 42 (7): 2201-2209.   DOI: 10.11772/j.issn.1001-9081.2021050734
    摘要355)   HTML8)    PDF (5719KB)(299)    收藏

    针对当前YOLOv4目标检测网络结构复杂、参数多、训练所需的配置高以及实时检测每秒传输帧数(FPS)低的问题,提出一种基于YOLOv4的轻量化目标检测算法ML-YOLO。首先,用MobileNetv3结构替换YOLOv4的主干特征提取网络,从而通过MobileNetv3中的深度可分离卷积大幅减少主干网络的参数量;然后,用简化的加权双向特征金字塔网络(Bi-FPN)结构替换YOLOv4的特征融合网络,从而用Bi-FPN中的注意力机制提高目标检测精度;最后,通过YOLOv4的解码算法来生成最终的预测框,并实现目标检测。在VOC2007数据集上的实验结果表明,ML-YOLO算法的平均准确率均值(mAP)达到80.22%,与YOLOv4算法相比降低了3.42个百分点,与YOLOv5m算法相比提升了2.82个百分点;而ML-YOLO算法的模型大小仅为44.75 MB,与YOLOv4算法相比减小了199.54 MB,与YOLOv5m算法相比,只高了2.85 MB。实验结果表明,所提的ML-YOLO模型,一方面较YOLOv4模型大幅减小了模型大小,另一方面保持了较高的检测精度,表明该算法可以满足移动端或者嵌入式设备进行目标检测的轻量化和准确性需求。

    图表 | 参考文献 | 相关文章 | 多维度评价
    20. 面向通信成本优化的联邦学习算法
    郑赛, 李天瑞, 黄维
    《计算机应用》唯一官方网站    2023, 43 (1): 1-7.   DOI: 10.11772/j.issn.1001-9081.2021122054
    摘要327)   HTML17)    PDF (934KB)(209)    收藏

    联邦学习是一种能够保护数据隐私的机器学习设置,然而高昂的通信成本和客户端的异质性问题阻碍了联邦学习的规模化落地。针对这两个问题,提出一种面向通信成本优化的联邦学习算法。首先,服务器接收来自客户端的生成模型并生成模拟数据;然后,服务器利用模拟数据训练全局模型并将其发送给客户端,客户端利用全局模型进行微调后得到最终模型。所提算法仅需要客户端与服务器之间的一轮通信,并且利用微调客户端模型来解决客户端异质性问题。在客户端数量为20个时,在MNIST和CIFAR?10这两个数据集上进行了实验。结果表明,所提算法能够在保证准确率的前提下,在MNIST数据集上将通信的数据量减少至联邦平均(FedAvg)算法的1/10,在CIFAR-10数据集上将通信数据量减少至FedAvg算法的1/100。

    图表 | 参考文献 | 相关文章 | 多维度评价
    21. 基于深度学习的聚类综述
    董永峰, 邓亚晗, 董瑶, 王雅琮
    《计算机应用》唯一官方网站    2022, 42 (4): 1021-1028.   DOI: 10.11772/j.issn.1001-9081.2021071275
    摘要324)   HTML41)    PDF (623KB)(218)    收藏

    聚类是一种寻找数据之间内在结构的技术,是许多数据驱动应用领域的一个基本问题,而聚类性能在很大程度上取决于数据表示的质量。近年来,深度学习因其强大的特征提取能力被广泛地应用于聚类任务,以学习更好的特征表示,显著提高了聚类性能。首先,介绍了传统的聚类任务;然后,根据网络结构介绍了基于深度学习的聚类及代表性方法,指出了当前存在的问题,并介绍了基于深度学习的聚类在不同领域的应用;最后,对基于深度学习的聚类发展进行了总结与展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    22. 基于图像翻转变换的对抗样本生成方法
    杨博, 张恒巍, 李哲铭, 徐开勇
    《计算机应用》唯一官方网站    2022, 42 (8): 2319-2325.   DOI: 10.11772/j.issn.1001-9081.2021060993
    摘要320)   HTML46)    PDF (1609KB)(202)    收藏

    面对对抗样本的攻击,深度神经网络是脆弱的。对抗样本是在原始输入图像上添加人眼几乎不可见的噪声生成的,从而使深度神经网络误分类并带来安全威胁。因此在深度神经网络部署前,对抗性攻击是评估模型鲁棒性的重要方法。然而,在黑盒情况下,对抗样本的攻击成功率还有待提高,即对抗样本的可迁移性有待提升。针对上述情况,提出基于图像翻转变换的对抗样本生成方法——FT-MI-FGSM(Flipping Transformation Momentum Iterative Fast Gradient Sign Method)。首先,从数据增强的角度出发,在对抗样本生成过程的每次迭代中,对原始输入图像随机翻转变换;然后,计算变换后图像的梯度;最后,根据梯度生成对抗样本以减轻对抗样本生成过程中的过拟合,并提升对抗样本的可迁移性。此外,通过使用攻击集成模型的方法,进一步提高对抗样本的可迁移性。在ImageNet数据集上验证了所提方法的有效性。相较于I-FGSM(Iterative Fast Gradient Sign Method)和MI-FGSM(Momentum I-FGSM),在攻击集成模型设置下,FT-MI-FGSM在对抗训练网络上的平均黑盒攻击成功率分别提升了26.0和8.4个百分点。

    图表 | 参考文献 | 相关文章 | 多维度评价
    23. 基于事件表示的机器阅读理解模型
    王元龙, 刘晓敏, 张虎
    《计算机应用》唯一官方网站    2022, 42 (7): 1979-1984.   DOI: 10.11772/j.issn.1001-9081.2021050719
    摘要313)   HTML67)    PDF (916KB)(265)    收藏

    要真正理解一段语篇,在阅读理解过程对原文主旨线索的把握是非常重要的。针对机器阅读理解中主旨线索类型的问题,提出了基于事件表示的机器阅读理解分析方法。首先,通过线索短语从阅读材料中抽取篇章事件图,其中包括事件的表示、事件要素的抽取和事件关系的抽取等;然后,综合考虑事件的时间要素、情感要素以及每个词在文档中的重要性,采用TextRank算法选出线索相关的事件;最后,依据所选出的线索事件构建问题的答案。在收集了339道线索类题组成的测试集上,实验结果表明所提方法在BLEU和CIDEr评价指标上与基于TextRank算法的句子排序方法相比均有所提升,具体来说,BLEU-4指标提升了4.1个百分点,CIDEr指标提升了9个百分点。

    图表 | 参考文献 | 相关文章 | 多维度评价
    24. 基于多模态信息融合的时间序列预测模型
    吴明晖, 张广洁, 金苍宏
    《计算机应用》唯一官方网站    2022, 42 (8): 2326-2332.   DOI: 10.11772/j.issn.1001-9081.2021061053
    摘要312)   HTML39)    PDF (658KB)(221)    收藏

    针对传统单因子模型无法充分利用时间序列相关信息,以及这些模型对时间序列预测准确性和可靠性较差的问题,提出一种基于多模态信息融合的时间序列预测模型——Skip-Fusion对多模态数据中的文本数据和数值数据进行融合。首先利用BERT(Bidirectional Encoder Representations from Transformers)预训练模型和独热编码对不同类别的文本数据进行编码表示;再使用基于全局注意力机制的预训练模型获得多文本特征融合的单一向量表示;然后将得到的单一向量表示与数值数据按时间顺序对齐;最后通过时间卷积网络(TCN)模型实现文本和数值特征的融合,并通过跳跃连接完成多模态数据的浅层和深层特征的再次融合。在股票价格序列的数据集上进行实验,Skip-Fusion模型的均方根误差(RMSE)和日收益(R)分别为0.492和0.930,均优于现有的单模态模型和多模态融合模型的结果,同时在可决系数(R-Squared)上取得了0.955的拟合优度。实验结果表明,Skip-Fusion模型能够有效进行多模态信息融合并具有较高的预测准确性和可靠性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    25. 布隆过滤器研究综述
    华文镝, 高原, 吕萌, 谢平
    《计算机应用》唯一官方网站    2022, 42 (6): 1729-1747.   DOI: 10.11772/j.issn.1001-9081.2021061392
    摘要311)   HTML22)    PDF (3209KB)(85)    收藏

    布隆过滤器(BF)是一种基于哈希策略的二进制向量数据结构,凭借分摊哈希碰撞的思想、存在单向误判性的特点以及极小常数查询时间复杂度,常用于表示集合元素并作为进行集合元素查询操作的“加速器”。作为计算机工程中解决集合元素查询问题最好的数学工具,BF在网络工程、存储系统、数据库、文件系统、分布式系统等领域得到了广泛的应用和发展。近几年来,为了适用于各种硬件环境和应用场景,BF出现了大量基于改变结构、优化算法等思想的变种方案。随着大数据时代的发展,对BF自身特点和操作逻辑进行改进已经成为现有集合元素查询研究的一个重要方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    26. 改进的联邦加权平均算法
    罗长银, 王君宇, 陈学斌, 马春地, 张淑芬
    《计算机应用》唯一官方网站    2022, 42 (4): 1131-1136.   DOI: 10.11772/j.issn.1001-9081.2021071264
    摘要301)   HTML13)    PDF (468KB)(142)    收藏

    针对基于层次分析改进的联邦平均算法在计算其数据质量时存在主观因素的影响,提出改进的联邦加权平均算法,从数据质量的角度来处理多源数据。首先,将训练样本划分为预训练样本与预测试样本;然后,使用初始全局模型在预训练数据上的精度作为该数据源的质量权重;最后,将质量权重引入到联邦平均算法中,重新进行全局模型中权重更新。仿真结果表明,在均等分割的数据集与非均等分割的数据集上,改进的联邦加权平均算法训练的模型与传统联邦平均算法训练的模型相比,准确率最高分别提升了1.59%和1.24%;改进的联邦加权平均算法训练的模型与传统整合多方数据再训练的模型相比,虽然准确率略有下降,但数据与模型的安全性有所提升。

    图表 | 参考文献 | 相关文章 | 多维度评价
    27. 结合图自编码器与聚类的半监督表示学习方法
    杜航原, 郝思聪, 王文剑
    《计算机应用》唯一官方网站    2022, 42 (9): 2643-2651.   DOI: 10.11772/j.issn.1001-9081.2021071354
    摘要300)   HTML50)    PDF (1000KB)(273)    收藏

    节点标签是复杂网络中广泛存在的监督信息,对网络表示学习具有重要作用。基于此,提出了一种结合图自编码器与聚类的半监督表示学习方法(GAECSRL)。首先,以图卷积网络(GCN)和内积函数分别作为编码器和解码器,并构建图自编码器以形成信息传播框架;然后,在编码器生成的低维表示基础上增加k-means聚类模块,从而使图自编码器的训练过程和节点的类别分布划分形成自监督机制;最后,利用节点标签的判别信息对网络低维表示的类别划分进行指导,将网络表示生成、类别划分以及图自编码器的训练构建在一个统一的优化模型中,并获得融合节点标签信息的有效网络表示结果。在仿真实验中,将GAECSRL用于节点分类和链接预测任务。实验结果表明,相比DeepWalk、node2vec、全局结构信息图表示学习(GraRep)、结构化深度网络嵌入(SDNE)和用数据的转导式或归纳式嵌入预测标签和邻居(Planetoid),在节点分类任务中GAECSRL的Micro?F1指标提高了0.9~24.46个百分点,Macro?F1指标提高了0.76~24.20个百分点;在链接预测任务中,GAECSRL的AUC指标提高了0.33~9.06个百分点,说明GAECSRL获得的网络表示结果能有效提高节点分类和链接预测任务的性能。

    图表 | 参考文献 | 相关文章 | 多维度评价
    28. 融合多粒度社区信息的网络嵌入方法
    胡军, 许正康, 刘立, 钟福金
    《计算机应用》唯一官方网站    2022, 42 (3): 663-670.   DOI: 10.11772/j.issn.1001-9081.2021040790
    摘要295)   HTML57)    PDF (758KB)(237)    收藏

    现有大多数网络嵌入方法仅保留了网络的局部结构信息,而忽略了网络中的其他潜在信息。为了保留网络的社区信息,并体现网络社区结构的多粒度特性,提出一种融合多粒度社区信息的网络嵌入方法(EMGC)。首先,获得网络的多粒度社区结构,并初始化节点嵌入和社区嵌入;然后,根据上一粒度上的节点嵌入和本层粒度的社区结构,更新社区嵌入,进而调整相应的节点嵌入;最后,对不同粒度下的节点嵌入进行拼接,从而得到融合多粒度社区信息的网络嵌入结果。在4个真实网络数据集上进行实验,相较于未考虑社区信息的方法(DeepWalk、node2vec)和考虑了单一粒度社区信息的方法(ComE、GEMSEC),EMGC在链接预测上的AUC值和节点分类上的F1值总体上优于对比方法。实验结果表明EMGC能够有效提升后续链接预测和节点分类的准确率。

    图表 | 参考文献 | 相关文章 | 多维度评价
    29. 基于改进注意力机制的交通标志检测算法
    张新宇, 丁胜, 杨治佩
    《计算机应用》唯一官方网站    2022, 42 (8): 2378-2385.   DOI: 10.11772/j.issn.1001-9081.2021061005
    摘要287)   HTML24)    PDF (1664KB)(197)    收藏

    针对交通标志在某些场景中存在分辨率过低、被覆盖等环境因素影响导致在目标检测任务中出现漏检、误检的情况,提出一种基于改进注意力机制的交通标志检测算法。首先,针对交通标志因破损、光照等环境影响造成图像分辨率低从而导致网络提取图像特征信息有限的问题,在主干网络中添加注意力模块以增强目标区域的关键特征;其次,特征图中相邻通道间的局部特征由于感受野重叠而存在一定的相关性,用大小为k的一维卷积代替通道注意力模块中的全连接层,以达到聚合不同通道信息和减少额外参数量的作用;最后,在路径聚合网络(PANet)的中、小尺度特征层引入感受野模块来增大特征图的感受野以融合目标区域的上下文信息,从而提升网络对交通标志的检测能力。在中国交通标志检测数据集(CCTSDB)上的实验结果表明,所提出的YOLOv4(You Only Look Once v4)改进算法在引进极少的参数量与原算法检测速度相差不大的情况下,平均精确率均值(mAP)达96.88%,mAP提升了1.48%;而与轻量级网络YOLOv5s相比,在单张检测速度慢10 ms的情况下,所提算法mAP比YOLOv5s高3.40个百分点,检测速度达到40?frame/s,说明该算法完全满足目标检测实时性的要求。

    图表 | 参考文献 | 相关文章 | 多维度评价
    30. 基于强化学习的交通情景问题决策优化
    罗飞, 白梦伟
    《计算机应用》唯一官方网站    2022, 42 (8): 2361-2368.   DOI: 10.11772/j.issn.1001-9081.2021061012
    摘要282)   HTML15)    PDF (735KB)(120)    收藏

    在复杂交通情景中求解出租车路径规划决策问题和交通信号灯控制问题时,传统强化学习算法在收敛速度和求解精度上存在局限性;因此提出一种改进的强化学习算法求解该类问题。首先,通过优化的贝尔曼公式和快速Q学习(SQL)机制,以及引入经验池技术和直接策略,提出一种改进的强化学习算法GSQL-DSEP;然后,利用GSQL-DSEP算法分别优化出租车路径规划决策问题中的路径长度与交通信号灯控制问题中的车辆总等待时间。相较于Q学习、快速Q学习(SQL)、、广义快速Q学习(GSQL)、Dyna-Q算法,GSQL-DSEP算法在性能测试中降低了至少18.7%的误差,在出租车路径规划决策问题中使决策路径长度至少缩短了17.4%,在交通信号灯控制问题中使车辆总等待时间最多减少了51.5%。实验结果表明,相较于对比算法,GSQL-DSEP算法对解决交通情景问题更具优势。

    图表 | 参考文献 | 相关文章 | 多维度评价
    31. 基于轻量化YOLOv4的交通信息实时检测方法
    郭克友, 李雪, 杨民
    《计算机应用》唯一官方网站    2023, 43 (1): 74-80.   DOI: 10.11772/j.issn.1001-9081.2021101849
    摘要276)   HTML5)    PDF (3019KB)(204)    收藏

    针对日常道路场景下的车辆目标检测问题,提出一种轻量化的YOLOv4交通信息实时检测方法。首先,制作了一个多场景、多时段的车辆目标数据集,并利用K-means++算法对数据集进行预处理;其次,提出轻量化YOLOv4检测模型,利用MobileNet?v3替换YOLOv4的主干网络,降低模型的参数量,并引入深度可分离卷积代替原网络中的标准卷积;最后,结合标签平滑和退火余弦算法,使用LeakyReLU激活函数代替MobileNet?v3浅层网络中原有的激活函数,从而优化模型的收敛效果。实验结果表明,轻量化YOLOv4的权值文件为56.4 MB,检测速率为85.6 FPS,检测精度为93.35%,表明所提方法可以为实际道路中的交通实时信息检测及其应用提供参考。

    图表 | 参考文献 | 相关文章 | 多维度评价
    32. 基于中国写意风格迁移的动漫视频生成模型
    毛文涛, 吴桂芳, 吴超, 窦智
    《计算机应用》唯一官方网站    2022, 42 (7): 2162-2169.   DOI: 10.11772/j.issn.1001-9081.2021050836
    摘要268)   HTML4)    PDF (5691KB)(60)    收藏

    目前生成式对抗网络(GAN)已经被用于图像的动漫风格转换。然而,现有基于GAN的动漫生成模型主要以日本动漫和美国动漫为对象,集中在写实风格的提取与生成,很少关注到中国风动漫中写意风格的迁移,因此限制了GAN在国内广大动漫制作市场中的应用。针对这一问题,通过将中国写意风格融入到GAN模型,提出了一种新的中国风动漫生成式对抗网络模型CCGAN,用以自动生成具有中国写意风格的动漫视频。首先,通过在生成器中增加反向残差块,构造了一个轻量级的深度神经网络模型,以降低视频生成的计算代价。其次,为了提取并迁移中国写意风格中图像边缘锐利、内容构造抽象、描边线条具有水墨质感等性质,在生成器中构造了灰度样式损失和颜色重建损失,以约束真实图像和中国风样例图像在风格上的高层语义一致性,并且在判别器中构造了灰度对抗损失和边缘促进对抗损失,以约束重构图像与样例图像保持相同的边缘特性。最终,采用Adam算法最小化上述损失函数,从而实现风格迁移,并将重构图像组合为视频。实验结果表明,与目前最具代表性的风格迁移模型CycleGAN与CartoonGAN相比,所提CCGAN可从以《中国唱诗班》为例的中国风动漫中有效地学习到中国写意风格,同时显著降低了计算代价,适合于大批量动漫视频的快速生成。

    图表 | 参考文献 | 相关文章 | 多维度评价
    33. 基于改进RetinaNet的船舶检测算法
    凡文俊, 赵曙光, 郭力争
    《计算机应用》唯一官方网站    2022, 42 (7): 2248-2255.   DOI: 10.11772/j.issn.1001-9081.2021050831
    摘要265)   HTML6)    PDF (4946KB)(76)    PDF(mobile) (3371KB)(48)    收藏

    目前基于深度学习算法的目标检测技术在合成孔径雷达(SAR)图像船舶检测中取得了显著的成果,然而仍存在着小目标船舶和近岸密集排列船舶检测效果差的问题。针对上述问题,提出了基于改进RetinaNet的船舶检测算法。在传统RetinaNet算法的基础上,首先,将特征提取网络残差块中的卷积改进为分组卷积,以增加网络宽度,从而提高网络的特征提取能力;其次,在特征提取网络的后两个阶段加入注意力机制,让网络更加专注于目标区域,从而提升目标检测能力;最后,将软非极大值抑制(Soft-NMS)加入到算法中,降低算法对于近岸密集排列船舶检测的漏检率。在高分辨率SAR图像数据集(HRSID)和SAR船舶检测数据集(SSDD)上的实验结果表明,所提改进算法对于小目标船舶和近岸船舶的检测效果得到了有效提升,与当前优秀的目标检测模型Faster R-CNN、YOLOv3和CenterNet等相比,在检测精度和速度上更加优越。

    图表 | 参考文献 | 相关文章 | 多维度评价
    34. 深度强化学习解决动态旅行商问题
    陈浩杰, 范江亭, 刘勇
    《计算机应用》唯一官方网站    2022, 42 (4): 1194-1200.   DOI: 10.11772/j.issn.1001-9081.2021071253
    摘要264)   HTML9)    PDF (795KB)(113)    收藏

    针对未设计启发式算法的组合优化问题设计统一的解决方案已成为机器学习领域的一个研究热点,目前成熟的技术主要针对静态的组合优化问题,但是对于加入动态变化的组合优化问题还没有得到充分的解决。为了解决以上问题,提出一个将多头注意力机制与分层强化学习结合来求解动态图上的旅行商问题的轻量级模型Dy4TSP。首先,用以多头注意力机制为基础的预测网络处理来自图卷积神经网络的节点表征向量输入;然后,借助分布式强化学习算法训练来快速地预估图中每个节点被输出作为最优解的可能性,使得模型在不同的可能性中全面探索问题的最优解决方案空间;最后,训练后的模型将实时地生成满足具体目标奖励函数的动作决策序列。该模型在3个组合优问题上进行了评估,实验结果表明,该模型在经典旅行商系列问题中解的质量比开源求解器LKH3高0.15~0.37个单位,明显优于带有边嵌入的图注意网络(EGATE)等最新的算法;并且在其他的动态旅行商问题中可以达到0.1~1.05的最优路径差距,结果也略胜一筹。

    图表 | 参考文献 | 相关文章 | 多维度评价
    35. 基于先验知识的非负矩阵半可解释三因子分解算法
    陈露, 张晓霞, 于洪
    《计算机应用》唯一官方网站    2022, 42 (3): 671-675.   DOI: 10.11772/j.issn.1001-9081.2021040927
    摘要260)   HTML25)    PDF (600KB)(156)    收藏

    非负矩阵三因子分解是潜在因子模型中的重要组成部分,由于能将原始数据矩阵分解为三个相互约束的潜因子矩阵,被广泛应用于推荐系统、迁移学习等研究领域,但目前还没有非负矩阵三因子分解的可解释性方面的研究工作。鉴于此,将用户评论文本信息当作先验知识,设计了一种基于先验知识的非负矩阵半可解释三因子分解(PE-NMTF)算法。首先利用情感分析技术提取用户评论文本信息的情感极性偏好;然后更改了非负矩阵三因子分解算法的目标函数和更新公式,巧妙地将先验知识嵌入到算法中;最后在推荐系统冷启动任务的Yelp和Amazon数据集以及图像零次识别任务的AwA和CUB数据集上与非负矩阵分解、非负矩阵三因子分解算法做了大量对比实验,实验结果表明所提算法在均方根误差(RMSE)、归一化折损累计增益(NDCG)、归一化互信息(NMI)和准确率(ACC)上都表现优异,且利用先验知识进行非负矩阵三因子分解的解释具有可行性和有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    36. 基于卷积神经网络的机械故障诊断技术综述
    汪祖民, 张志豪, 秦静, 季长清
    《计算机应用》唯一官方网站    2022, 42 (4): 1036-1043.   DOI: 10.11772/j.issn.1001-9081.2021071266
    摘要259)   HTML15)    PDF (532KB)(148)    收藏

    针对传统机械故障诊断方法难以解决人工提取不确定性的问题,提出了大量深度学习的特征提取方法,极大地推动了机械故障诊断的发展。作为深度学习的典型代表,卷积神经网络(CNN)在图像分类、目标检测、图像语义分割等领域都取得了重大的发展,在机械故障诊断领域也有大量文献发表。为了进一步了解利用CNN的方法进行机械故障诊断的问题,首先简单介绍了CNN的相关理论,然后从数据输入类型、迁移学习、预测等方面对CNN在机械故障诊断中的应用进行了归纳总结,最后展望了CNN及其在机械故障诊断应用中的发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    37. 基于改进Inception结构的知识图谱嵌入模型
    余晓鹏, 何儒汉, 黄晋, 张俊杰, 胡新荣
    《计算机应用》唯一官方网站    2022, 42 (4): 1065-1071.   DOI: 10.11772/j.issn.1001-9081.2021071265
    摘要254)   HTML23)    PDF (570KB)(84)    收藏

    知识图谱嵌入(KGE)将实体和关系映射到低维连续向量空间中,以利用机器学习方法实现关系数据的应用,如知识分析、推理、补全等。以ConvE为代表将卷积神经网络(CNN)应用于知识图谱嵌入中,以捕捉实体和关系的交互信息,但其标准卷积捕捉特征交互信息能力不足,特征表达能力低下。针对特征交互能力不足问题,提出了一种改进的Inception结构,在此基础上构建一个知识图谱嵌入模型InceE。首先,该结构使用混合空洞卷积替代标准卷积,以提高特征交互信息捕捉能力;其次,使用残差网络结构,以减少特征信息丢失。实验使用基准数据集Kinship、FB15k、WN18验证InceE链接预测有效性。在Kinship、FB15k数据集上,相较于ArcE和QuatRE模型,InceE的Hit@1分别提升了1.6和1.5个百分点;在三个数据集上,与ConvE对比,InceE的Hit@1分别提升了6.3、20.8和1.0个百分点。实验结果表明InceE具有更强的特征交互信息捕捉能力。

    图表 | 参考文献 | 相关文章 | 多维度评价
    38. 基于卷积神经网络和Transformer的手写体英文文本识别
    张显杰, 张之明
    《计算机应用》唯一官方网站    2022, 42 (8): 2394-2400.   DOI: 10.11772/j.issn.1001-9081.2021091564
    摘要248)   HTML32)    PDF (703KB)(161)    收藏

    手写体文本识别技术可以将手写文档转录成可编辑的数字文档。但由于手写的书写风格迥异、文档结构千变万化和字符分割识别精度不高等问题,基于神经网络的手写体英文文本识别仍面临着许多挑战。针对上述问题,提出基于卷积神经网络(CNN)和Transformer的手写体英文文本识别模型。首先利用CNN从输入图像中提取特征,而后将特征输入到Transformer编码器中得到特征序列每一帧的预测,最后经过链接时序分类(CTC)解码器获得最终的预测结果。在公开的IAM(Institut für Angewandte Mathematik)手写体英文单词数据集上进行了大量的实验结果表明,该模型获得了3.60%的字符错误率(CER)和12.70%的单词错误率(WER),验证了所提模型的可行性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    39. 结合BERT和特征投影网络的新闻主题文本分类方法
    张海丰, 曾诚, 潘列, 郝儒松, 温超东, 何鹏
    《计算机应用》唯一官方网站    2022, 42 (4): 1116-1124.   DOI: 10.11772/j.issn.1001-9081.2021071257
    摘要247)   HTML25)    PDF (1536KB)(125)    收藏

    针对新闻主题文本用词缺乏规范、语义模糊、特征稀疏等问题,提出了结合BERT和特征投影网络(FPnet)的新闻主题文本分类方法。该方法包含两种实现方式:方式1将新闻主题文本在BERT模型的输出进行多层全连接层特征提取,并将最终提取到的文本特征结合特征投影方法进行提纯,从而强化分类效果;方式2在BERT模型内部的隐藏层中融合特征投影网络进行特征投影,从而通过隐藏层特征投影强化提纯分类特征。在今日头条、搜狐新闻、THUCNews-L、THUCNews-S数据集上进行实验,实验结果表明上述两种方式相较于基线BERT方法在准确率、宏平均F1值上均具有更好的表现,准确率最高分别为86.96%、86.17%、94.40%和93.73%,验证了所提方法的可行性和有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    40. 基于改进YOLOv3的多尺度目标检测算法
    张丽莹, 庞春江, 王新颖, 李国亮
    《计算机应用》唯一官方网站    2022, 42 (8): 2423-2431.   DOI: 10.11772/j.issn.1001-9081.2021060984
    摘要247)   HTML14)    PDF (1714KB)(143)    收藏

    为了进一步提高多尺度目标检测的速度和精度,解决小目标检测易造成的漏检、错检以及重复检测等问题,提出一种基于改进YOLOv3的目标检测算法实现多尺度目标的自动检测。首先,在特征提取网络中对网络结构进行改进,在残差模块的空间维度中引入注意力机制,对小目标进行关注;然后,利用密集连接网络(DenseNet)充分融合网络浅层信息,并用深度可分离卷积替换主干网络中的普通卷积,减少模型的参数量,提升检测速率。在特征融合网络中,通过双向金字塔结构实现深浅层特征的双向融合,并将3尺度预测变为4尺度预测,提高了多尺度特征的学习能力;在损失函数方面,选取GIoU(Generalized Intersection over Union)作为损失函数,提高目标识别的精度,降低目标漏检率。实验结果表明,基于改进YOLOv3(You Only Look Once v3)的目标检测算法在Pascal VOC测试集上的平均准确率均值(mAP)达到83.26%,与原YOLOv3算法相比提升了5.89个百分点,检测速度达22.0 frame/s;在COCO数据集上,与原YOLOv3算法相比,基于改进YOLOv3的目标检测算法在mAP上提升了3.28个百分点;同时,在进行多尺度的目标检测中,算法的mAP有所提升,验证了基于改进YOLOv3的目标检测算法的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
2023年 43卷 1期
刊出日期: 2023-01-10
文章目录
过刊浏览
荣誉主编:张景中
主  编:徐宗本
副主编
:申恒涛 夏朝晖

国内邮发代号:62-110
国外发行代号:M4616
地址:四川成都双流区四川天府新区
   兴隆街道科智路1369号
   中科信息(科学城园区) B213
   (计算机应用编辑部)
电话:028-85224283-803
   028-85222239-803
网址:www.joca.cn
E-mail: bjb@joca.cn
期刊微信公众号
CCF扫码入会