摘要点击排行

    一年内发表文章 |  两年内 |  三年内 |  全部

    当前位置: 全部
    Please wait a minute...
    选择: 显示/隐藏图片
    1. 联邦学习综述:概念、技术、应用与挑战
    梁天恺, 曾碧, 陈光
    《计算机应用》唯一官方网站    2022, 42 (12): 3651-3662.   DOI: 10.11772/j.issn.1001-9081.2021101821
    摘要1309)   HTML34)    PDF (2464KB)(788)    收藏

    在强调数据确权以及隐私保护的时代背景下,联邦学习作为一种新的机器学习范式,能够在不暴露各方数据的前提下达到解决数据孤岛以及隐私保护问题的目的。目前,基于联邦学习的建模方法已成为主流并且获得了很好的效果,因此对联邦学习的概念、技术、应用和挑战进行总结与分析具有重要的意义。首先,阐述了机器学习的发展历程以及联邦学习出现的必然性,并给出联邦学习的定义与分类;其次,介绍并分析了目前业界认可的三种联邦学习方法:横向联邦学习、纵向联邦学习和联邦迁移学习;然后,针对联邦学习的隐私保护问题,归纳并总结了目前常见的隐私保护技术;此外,还对联邦学习的现有主流开源框架进行了介绍与对比,同时给出了联邦学习的应用场景;最后,展望了联邦学习所面临的挑战和未来的研究方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    2. 基于多重注意力机制的图神经网络股市波动预测方法
    李晓寒, 王俊, 贾华丁, 萧刘
    《计算机应用》唯一官方网站    2022, 42 (7): 2265-2273.   DOI: 10.11772/j.issn.1001-9081.2021081487
    摘要720)   HTML17)    PDF (2246KB)(236)    收藏

    股票市场是金融市场关键组成部分,因此对股票市场波动的研究对合理化控制金融市场风险、提高投资收益提供了重要支持,一直以来都是学术界和相关业界的关注焦点,然而,股票市场会受到各种因素的影响。面对股票市场中多源化、异构化的信息,如何高效挖掘、融合股票市场的多源异构数据具有挑战性。为了充分解释不同信息及信息间相互作用对于股票市场价格波动的影响,提出一种基于多重注意力机制的图神经网络来预测股票市场的价格波动。首先,引入关系维度构建股票市场交易数据和新闻文本的异构子图,并利用多重注意力机制实现图数据的融合;其次,通过图神经网络门控循环单元(GRU)进行图分类,在此基础上完成对股票市场中上证综合指数、沪深300指数、深证成份指数这三个重要指数波动的预测。实验结果表明,从异构信息特性角度,相较于股票市场交易数据,股市新闻信息对于股票价格影响存在滞后性;从异构信息融合角度,所提方法与支持向量机(SVM)、随机森林、多核k-means (MKKM)聚类等算法相比,预测准确率分别提升了17.88个百分点、30.00个百分点和38.00个百分点,并进行了模型交易策略的量化投资模拟。

    图表 | 参考文献 | 相关文章 | 多维度评价
    3. 多模态预训练模型综述
    王惠茹, 李秀红, 李哲, 马春明, 任泽裕, 杨丹
    《计算机应用》唯一官方网站    2023, 43 (4): 991-1004.   DOI: 10.11772/j.issn.1001-9081.2022020296
    摘要709)   HTML86)    PDF (5539KB)(559)    PDF(mobile) (3280KB)(55)    收藏

    预训练模型(PTM)通过利用复杂的预训练目标和大量的模型参数,可以有效地获得无标记数据中的丰富知识。而在多模态中,PTM的发展还处于初期。根据具体模态的不同,将目前大多数的多模态PTM分为图像?文本PTM和视频?文本PTM;根据数据融合方式的不同,还可将多模态PTM分为单流模型和双流模型两类。首先,总结了常见的预训练任务和验证实验所使用的下游任务;接着,梳理了目前多模态预训练领域的常见模型,并用表格列出各个模型的下游任务以及模型的性能和实验数据比较;然后,介绍了M6(Multi-Modality to Multi-Modality Multitask Mega-transformer)模型、跨模态提示调优(CPT)模型、VideoBERT(Video Bidirectional Encoder Representations from Transformers)模型和AliceMind(Alibaba’s collection of encoder-decoders from Mind)模型在具体下游任务中的应用场景;最后,总结了多模态PTM相关工作面临的挑战以及未来可能的研究方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    4. 基于多尺度卷积和注意力机制的LSTM时间序列分类
    玄英律, 万源, 陈嘉慧
    《计算机应用》唯一官方网站    2022, 42 (8): 2343-2352.   DOI: 10.11772/j.issn.1001-9081.2021061062
    摘要692)   HTML47)    PDF (711KB)(322)    收藏

    时间序列的多尺度特征包含丰富的类别信息,且这些信息对分类具有不同的重要程度,然而现有的单变量时间序列分类模型通常以固定大小的卷积核提取序列特征,导致不能有效地获取并聚焦重要的多尺度特征。针对上述问题,提出一种基于多尺度卷积和注意力机制(MCA)的长短时记忆(LSTM)模型(MCA-LSTM),它能够关注并融合重要的多尺度特征,从而实现更准确的分类。其中,LSTM使用记忆细胞和门机制控制序列信息的传递,并充分提取时间序列的相关性信息;多尺度卷积模块(MCM)使用具有不同卷积核的卷积神经网络(CNN)提取序列的多尺度特征;注意力模块(AM)融合通道信息获取特征的重要性并分配注意力权重,从而使网络关注重要的时间序列特征。在UCR档案的65个单变量时间序列数据集上的实验结果表明,对比当前最先进的基于深度学习的时间序列分类模型:USRL-FordA(Unsupervised Scalable Representation Learning-FordA)、USRL-Combined (1-NN) (Unsupervised Scalable Representation Learning-Combined (1-Nearest Neighbor)) OS-CNN(Omni-Scale Convolutional Neural Network)、Inception-Time和RTFN(Robust Temporal Feature Network for time series classification),MCA-LSTM在平均错误率(ME)上分别降低了7.48、9.92、2.43、2.09和0.82个百分点,并取得了最高的算术平均排名(AMR)和几何平均排名(GMR),分别为2.14和3.23,这些充分体现了MCA-LSTM模型在单变量时间序列分类中的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    5. 基于Transformer的U型医学图像分割网络综述
    傅励瑶, 尹梦晓, 杨锋
    《计算机应用》唯一官方网站    2023, 43 (5): 1584-1595.   DOI: 10.11772/j.issn.1001-9081.2022040530
    摘要676)   HTML7)    PDF (1887KB)(444)    收藏

    目前,医学图像分割模型广泛采用基于全卷积网络(FCN)的U型网络(U-Net)作为骨干网,但卷积神经网络(CNN)在捕捉长距离依赖能力上的劣势限制了分割模型性能的进一步提升。针对上述问题,研究者们将Transformer应用到医学图像分割模型中以弥补CNN的不足,结合Transformer和U型结构的分割网络成为研究热点之一。在详细介绍U-Net和Transformer之后,按医学图像分割模型中Transformer模块所处的位置,包括仅在编码器或解码器、同时在编码器和解码器、作为过渡连接和其他位置进行分类,讨论各模型的基本内容、设计理念以及可改进的地方,并分析了Transformer处于不同位置的优缺点。根据分析结果可知,决定Transformer所在位置的最大因素是目标分割任务的特点,而且Transformer结合U-Net的分割模型能更好地利用CNN和Transformer各自的优势,提高模型的分割性能,具有较大的发展前景和研究价值。

    图表 | 参考文献 | 相关文章 | 多维度评价
    6. 基于区块链的联邦学习研究进展
    孙睿, 李超, 王伟, 童恩栋, 王健, 刘吉强
    《计算机应用》唯一官方网站    2022, 42 (11): 3413-3420.   DOI: 10.11772/j.issn.1001-9081.2021111934
    摘要623)   HTML28)    PDF (1086KB)(407)    收藏

    联邦学习(FL)是一种能够实现用户数据不出本地的新型隐私保护学习范式。随着相关研究工作的不断深入,FL的单点故障及可信性缺乏等不足之处逐渐受到重视。近年来,起源于比特币的区块链技术取得迅速发展,它开创性地构建了去中心化的信任,为FL的发展提供了一种新的可能。对现有基于区块链的FL框架进行对比分析,深入讨论区块链与FL相结合所解决的FL重要问题,并阐述了基于区块链的FL技术在物联网(IoT)、工业物联网(IIoT)、车联网(IoV)、医疗服务等多个领域的应用前景。

    图表 | 参考文献 | 相关文章 | 多维度评价
    7. 基于孪生网络的单目标跟踪算法综述
    王梦亭, 杨文忠, 武雍智
    《计算机应用》唯一官方网站    2023, 43 (3): 661-673.   DOI: 10.11772/j.issn.1001-9081.2022010150
    摘要563)   HTML101)    PDF (2647KB)(486)    收藏

    单目标跟踪是计算机视觉领域的一个重要研究方向,在视频监控、自动驾驶等领域应用广泛。对于单目标跟踪算法,尽管已有大量总结研究,但大多基于相关滤波或深度学习。近年来,基于孪生网络的跟踪算法因在精度和速度之间取得的平衡受到研究者们的广泛关注,然而目前对该类型算法的总结分析相对较少,并且对这些算法的架构层面缺少系统分析。为深入了解基于孪生网络的单目标跟踪算法,对大量相关文献进行了总结与分析。首先阐述孪生网络的结构和应用,并根据孪生跟踪算法架构组成的分类介绍了各跟踪算法;然后列举单目标跟踪领域常用的数据集和评价指标,对25个主流跟踪算法在OTB2015数据集上分别进行整体和各属性的性能比较与分析,并列出23个孪生跟踪算法在LaSOT和GOT-10K测试集上的性能以及推理时的速度;最后对基于孪生网络的目标跟踪算法的研究进行总结,并对未来的发展方向进行展望。

    图表 | 参考文献 | 相关文章 | 多维度评价
    8. 不平衡多分类算法综述
    李蒙蒙, 刘艺, 李庚松, 郑奇斌, 秦伟, 任小广
    《计算机应用》唯一官方网站    2022, 42 (11): 3307-3321.   DOI: 10.11772/j.issn.1001-9081.2021122060
    摘要562)   HTML65)    PDF (1861KB)(393)    收藏

    不平衡数据分类是机器学习领域的重要研究内容,但现有的不平衡分类算法通常针对不平衡二分类问题,关于不平衡多分类的研究相对较少。然而实际应用中的数据集通常具有多类别且数据分布具有不平衡性,而类别的多样性进一步加剧了不平衡数据的分类难度,因此不平衡多分类问题已经成为亟待解决的研究课题。针对近年来提出的不平衡多分类算法展开综述,根据是否采用分解策略把不平衡多分类算法分为分解方法和即席方法,并进一步将分解方法按照分解策略的不同划分为“一对一(OVO)”架构和“一对多(OVA)”架构,将即席方法按照处理技术的不同分为数据级方法、算法级方法、代价敏感方法、集成方法和基于深度网络的方法。系统阐述各类方法的优缺点及其代表性算法,总结概括不平衡多分类方法的评价指标,并通过实验深入分析代表性方法的性能,讨论了不平衡多分类的未来发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    9. 基于节点-属性二部图的网络表示学习模型
    周乐, 代婷婷, 李淳, 谢军, 楚博策, 李峰, 张君毅, 刘峤
    《计算机应用》唯一官方网站    2022, 42 (8): 2311-2318.   DOI: 10.11772/j.issn.1001-9081.2021060972
    摘要527)   HTML133)    PDF (843KB)(394)    收藏

    在图结构数据上开展推理计算是一项重大的任务,该任务的主要挑战是如何表示图结构知识使机器可以快速理解并利用图数据。对比现有表示学习模型发现,基于随机游走方法的表示学习模型容易忽略属性对节点关联关系的特殊作用,因此提出一种基于节点邻接关系与属性关联关系的混合随机游走方法。首先通过邻接节点间的共同属性分布计算属性权重,并获取节点到每个属性的采样概率;然后分别从邻接节点与含有共有属性的非邻接节点中提取网络信息;最后构建基于节点-属性二部图的网络表示学习模型,并通过上述采样序列学习得到节点向量表达。在Flickr、BlogCatalog、Cora公开数据集上,用所提模型得到的节点向量表达进行节点分类的Micro-F1平均准确率为89.38%,比GraphRNA(Graph Recurrent Networks with Attributed random walks)高出了2.02个百分点,比经典工作DeepWalk高出了21.12个百分点;同时,对比不同随机游走方法发现,提高对节点关联有促进作用的属性的采样概率可以增加采样序列所含信息。

    图表 | 参考文献 | 相关文章 | 多维度评价
    10. 实例簇驱动的图结构聚类参数计算算法
    宗传玉, 宪超, 夏秀峰
    《计算机应用》唯一官方网站    2023, 43 (2): 398-406.   DOI: 10.11772/j.issn.1001-9081.2022010082
    摘要526)   HTML4)    PDF (2584KB)(37)    收藏

    pSCAN算法的聚类结果受密度约束参数和相似度阈值参数的影响,如果用户提供的聚类参数得到的聚类结果无法满足需求,那么用户可以通过实例簇表达自己的聚类需求。针对实例簇表达聚类查询需求的问题,提出一种实例簇驱动的图结构聚类参数计算算法PART及其改进算法ImPART。首先,分析两个聚类参数对聚类结果的影响,并提取实例簇的相关子图;其次,对相关子图进行分析得到密度约束参数的可行区间,并根据当前密度约束参数和节点之间的结构相似度将实例簇内节点划分为核心节点和非核心节点;最后,依据节点划分结果计算出当前密度约束参数对应的最优相似度阈值参数,并在相关子图上对得到的参数进行验证和优化,直到得到满足实例簇需求的聚类参数。在真实数据集上的实验结果表明,所提算法能够为用户实例簇返回一组有效参数,且所提改进算法ImPART的运行时间比PART缩短了20%以上,能够快速有效地为用户返回满足实例簇要求的最优聚类参数。

    图表 | 参考文献 | 相关文章 | 多维度评价
    11. 事件抽取综述
    马春明, 李秀红, 李哲, 王惠茹, 杨丹
    《计算机应用》唯一官方网站    2022, 42 (10): 2975-2989.   DOI: 10.11772/j.issn.1001-9081.2021081542
    摘要516)   HTML88)    PDF (3054KB)(325)    收藏

    将用户感兴趣的事件从非结构化信息中提取出来,然后以结构化的方式展示给用户,这就是事件抽取。事件抽取在信息收集、信息检索、文档合成、信息问答等方面有着广泛应用。从全局出发,事件抽取算法可以分为基于模式匹配的算法、触发词法、基于本体的算法以及前沿联合模型方法这四类。在研究过程中根据相关需求可使用不同评价方法和数据集,而不同的事件表示方法也与事件抽取研究有一定联系;以任务类型区分,元事件抽取和主题事件抽取是事件抽取的两大基本任务。其中,元事件抽取有基于模式匹配、基于机器学习和基于神经网络这三种方式,而主题事件抽取有基于事件框架和基于本体两种方式。事件抽取研究在中英等单语言上均已取得了优秀成果,而跨语言事件抽取依然面临着许多问题。最后,总结了事件抽取的相关工作并提出未来研究方向,以期为后续研究提供参考。

    图表 | 参考文献 | 相关文章 | 多维度评价
    12. 联邦学习中的隐私保护技术研究综述
    王腾, 霍峥, 黄亚鑫, 范艺琳
    《计算机应用》唯一官方网站    2023, 43 (2): 437-449.   DOI: 10.11772/j.issn.1001-9081.2021122072
    摘要498)   HTML57)    PDF (2014KB)(328)    收藏

    近年来,联邦学习成为解决机器学习中数据孤岛与隐私泄露问题的新思路。联邦学习架构不需要多方共享数据资源,只要参与方在本地数据上训练局部模型,并周期性地将参数上传至服务器来更新全局模型,就可以获得在大规模全局数据上建立的机器学习模型。联邦学习架构具有数据隐私保护的特质,是未来大规模数据机器学习的新方案。然而,该架构的参数交互方式可能导致数据隐私泄露。目前,研究如何加强联邦学习架构中的隐私保护机制已经成为新的热点。从联邦学习中存在的隐私泄露问题出发,探讨了联邦学习中的攻击模型与敏感信息泄露途径,并重点综述了联邦学习中的几类隐私保护技术:以差分隐私为基础的隐私保护技术、以同态加密为基础的隐私保护技术、以安全多方计算(SMC)为基础的隐私保护技术。最后,探讨了联邦学习中隐私保护中的若干关键问题,并展望了未来研究方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    13. 融合注意力机制的时间卷积知识追踪模型
    邵小萌, 张猛
    《计算机应用》唯一官方网站    2023, 43 (2): 343-348.   DOI: 10.11772/j.issn.1001-9081.2022010024
    摘要491)   HTML28)    PDF (2110KB)(249)    收藏

    针对基于循环神经网络(RNN)的深度知识追踪模型存在的可解释性不足和长序列依赖问题,提出一种融合注意力机制的时间卷积知识追踪(ATCKT)模型。首先,在训练阶段学习学生历史交互的嵌入表示;然后,使用基于题目的注意力机制学习特定权重矩阵,从而识别并强化学生的历史交互对每一时刻知识状态不同程度的影响;最后,使用时间卷积网络(TCN)提取学生动态变化的知识状态,在这个过程中利用扩张卷积和深层神经网络扩大序列学习范围,缓解长序列依赖问题。将ATCKT模型与深度知识追踪(DKT)、卷积知识追踪(CKT)等四种模型在ASSISTments2009、ASSISTments2015、Statics2011和Synthetic-5这4个数据集上进行对比实验,实验结果显示,所提模型的曲线下面积(AUC)和准确率(ACC)均有显著提升,尤其在ASSISTments2015数据集上表现最佳,分别提升了6.83~20.14个百分点和7.52~11.22个百分点,并且该模型的训练时间与DKT模型相比减少了26%。可见,所提模型可以更准确地捕捉学生的知识状态,更高效地预测学生未来的表现。

    图表 | 参考文献 | 相关文章 | 多维度评价
    14. 交互式机器翻译综述
    廖兴滨, 秦小林, 张思齐, 钱杨舸
    《计算机应用》唯一官方网站    2023, 43 (2): 329-334.   DOI: 10.11772/j.issn.1001-9081.2021122067
    摘要480)   HTML71)    PDF (1870KB)(374)    收藏

    随着深度学习的发展和成熟,神经机器翻译的质量也越来越高,然而仍不完美,为了达到可接受的翻译效果,需要人工进行后期编辑。交互式机器翻译(IMT)是这种串行工作的一个替代,即在翻译过程中进行人工互动,由用户对翻译系统产生的候选翻译进行验证,并且,如有必要,由用户提供新的输入,系统根据用户当前的反馈生成新的候选译文,如此往复,直到产生一个使用户满意的输出。首先,介绍了IMT的基本概念以及当前的研究进展;然后,分类对一些常用方法和前沿工作加以介绍,并简述每个工作的背景和创新之处;最后,探讨了IMT的发展趋势和研究难点。

    图表 | 参考文献 | 相关文章 | 多维度评价
    15. 基于数据增强和弱监督对抗训练的中文事件检测
    罗萍, 丁玲, 杨雪, 向阳
    《计算机应用》唯一官方网站    2022, 42 (10): 2990-2995.   DOI: 10.11772/j.issn.1001-9081.2021081521
    摘要466)   HTML43)    PDF (720KB)(229)    收藏

    当前的事件检测模型严重依赖于人工标注的数据,在标注数据规模有限的情况下,事件检测任务中基于完全监督方法的深度学习模型经常会出现过拟合的问题,而基于弱监督学习的使用自动标注数据代替耗时的人工标注数据的方法又常常依赖于复杂的预定义规则。为了解决上述问题,就中文事件检测任务提出了一种基于BERT的混合文本对抗训练(BMAD)方法。所提方法基于数据增强和对抗学习设定了弱监督学习场景,并采用跨度抽取模型来完成事件检测任务。首先,为改善数据不足的问题,采用回译、Mix-Text等数据增强方法来增强数据并为事件检测任务创建弱监督学习场景;然后,使用一种对抗训练机制进行噪声学习,力求最大限度地生成近似真实样本的生成样本,并最终提高整个模型的鲁棒性。在广泛使用的真实数据集自动文档抽取(ACE)2005上进行实验,结果表明相较于NPN、TLNN、HCBNN等算法,所提方法在F1分数上获取了至少0.84个百分点的提升。

    图表 | 参考文献 | 相关文章 | 多维度评价
    16. 面向通信成本优化的联邦学习算法
    郑赛, 李天瑞, 黄维
    《计算机应用》唯一官方网站    2023, 43 (1): 1-7.   DOI: 10.11772/j.issn.1001-9081.2021122054
    摘要465)   HTML29)    PDF (934KB)(299)    收藏

    联邦学习是一种能够保护数据隐私的机器学习设置,然而高昂的通信成本和客户端的异质性问题阻碍了联邦学习的规模化落地。针对这两个问题,提出一种面向通信成本优化的联邦学习算法。首先,服务器接收来自客户端的生成模型并生成模拟数据;然后,服务器利用模拟数据训练全局模型并将其发送给客户端,客户端利用全局模型进行微调后得到最终模型。所提算法仅需要客户端与服务器之间的一轮通信,并且利用微调客户端模型来解决客户端异质性问题。在客户端数量为20个时,在MNIST和CIFAR?10这两个数据集上进行了实验。结果表明,所提算法能够在保证准确率的前提下,在MNIST数据集上将通信的数据量减少至联邦平均(FedAvg)算法的1/10,在CIFAR-10数据集上将通信数据量减少至FedAvg算法的1/100。

    图表 | 参考文献 | 相关文章 | 多维度评价
    17. 基于改进YOLOv4的轻量化目标检测算法
    钟志峰, 夏一帆, 周冬平, 晏阳天
    《计算机应用》唯一官方网站    2022, 42 (7): 2201-2209.   DOI: 10.11772/j.issn.1001-9081.2021050734
    摘要443)   HTML12)    PDF (5719KB)(327)    收藏

    针对当前YOLOv4目标检测网络结构复杂、参数多、训练所需的配置高以及实时检测每秒传输帧数(FPS)低的问题,提出一种基于YOLOv4的轻量化目标检测算法ML-YOLO。首先,用MobileNetv3结构替换YOLOv4的主干特征提取网络,从而通过MobileNetv3中的深度可分离卷积大幅减少主干网络的参数量;然后,用简化的加权双向特征金字塔网络(Bi-FPN)结构替换YOLOv4的特征融合网络,从而用Bi-FPN中的注意力机制提高目标检测精度;最后,通过YOLOv4的解码算法来生成最终的预测框,并实现目标检测。在VOC2007数据集上的实验结果表明,ML-YOLO算法的平均准确率均值(mAP)达到80.22%,与YOLOv4算法相比降低了3.42个百分点,与YOLOv5m算法相比提升了2.82个百分点;而ML-YOLO算法的模型大小仅为44.75 MB,与YOLOv4算法相比减小了199.54 MB,与YOLOv5m算法相比,只高了2.85 MB。实验结果表明,所提的ML-YOLO模型,一方面较YOLOv4模型大幅减小了模型大小,另一方面保持了较高的检测精度,表明该算法可以满足移动端或者嵌入式设备进行目标检测的轻量化和准确性需求。

    图表 | 参考文献 | 相关文章 | 多维度评价
    18. 基于多模态信息融合的时间序列预测模型
    吴明晖, 张广洁, 金苍宏
    《计算机应用》唯一官方网站    2022, 42 (8): 2326-2332.   DOI: 10.11772/j.issn.1001-9081.2021061053
    摘要423)   HTML42)    PDF (658KB)(250)    收藏

    针对传统单因子模型无法充分利用时间序列相关信息,以及这些模型对时间序列预测准确性和可靠性较差的问题,提出一种基于多模态信息融合的时间序列预测模型——Skip-Fusion对多模态数据中的文本数据和数值数据进行融合。首先利用BERT(Bidirectional Encoder Representations from Transformers)预训练模型和独热编码对不同类别的文本数据进行编码表示;再使用基于全局注意力机制的预训练模型获得多文本特征融合的单一向量表示;然后将得到的单一向量表示与数值数据按时间顺序对齐;最后通过时间卷积网络(TCN)模型实现文本和数值特征的融合,并通过跳跃连接完成多模态数据的浅层和深层特征的再次融合。在股票价格序列的数据集上进行实验,Skip-Fusion模型的均方根误差(RMSE)和日收益(R)分别为0.492和0.930,均优于现有的单模态模型和多模态融合模型的结果,同时在可决系数(R-Squared)上取得了0.955的拟合优度。实验结果表明,Skip-Fusion模型能够有效进行多模态信息融合并具有较高的预测准确性和可靠性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    19. 细粒度图像分类综述
    申志军, 穆丽娜, 高静, 史远航, 刘志强
    《计算机应用》唯一官方网站    2023, 43 (1): 51-60.   DOI: 10.11772/j.issn.1001-9081.2021122090
    摘要414)   HTML11)    PDF (2455KB)(149)    收藏

    细粒度图像具有类内方差大、类间方差小的特点,致使细粒度图像分类(FGIC)的难度远高于传统的图像分类任务。介绍了FGIC的应用场景、任务难点、算法发展历程和相关的常用数据集,主要概述相关算法:基于局部检测的分类方法通常采用连接、求和及池化等操作,模型训练较为复杂,在实际应用中存在较多局限;基于线性特征的分类方法模仿人类视觉的两个神经通路分别进行识别和定位,分类效果相对较优;基于注意力机制的分类方法模拟人类观察外界事物的机制,先扫描全景,后锁定重点关注区域并形成注意力焦点,分类效果有进一步的提高。最后针对目前研究的不足,展望FGIC下一步的研究方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    20. 基于注意力机制的轻量型人体姿态估计
    李坤, 侯庆
    《计算机应用》唯一官方网站    2022, 42 (8): 2407-2414.   DOI: 10.11772/j.issn.1001-9081.2021061103
    摘要402)   HTML50)    PDF (876KB)(255)    收藏

    针对高分辨率人体姿态估计网络存在参数量大、运算复杂度高等问题,提出一种基于高分辨率网络(HRNet)的轻量型沙漏坐标注意力网络(SCANet)用于人体姿态估计。首先引入沙漏(Sandglass)模块和坐标注意力(CoordAttention)模块;然后在此基础上构建了沙漏坐标注意力瓶颈(SCAneck)模块和沙漏坐标注意力基础 (SCAblock)模块两种轻量型模块,在降低模型参数量和运算复杂度的同时,获取特征图空间方向的长程依赖和精确位置信息。实验结果显示,在相同图像分辨率和环境配置的情况下,在COCO(Common Objects in COntext)校验集上,SCANet模型与HRNet模型相比参数量降低了52.6%,运算复杂度降低了60.6%;在MPII(Max Planck Institute for Informatics)校验集上,SCANet模型与HRNet模型相比参数量和运算复杂度分别降低了52.6%和61.1%;与常见的人体姿态估计网络如堆叠沙漏网络(Hourglass)、级联金字塔网络(CPN)和SimpleBaseline相比,SCANet模型在拥有更少的参数量与运算复杂度的情况下,仍能实现对人体关键点的高准确度预测。

    图表 | 参考文献 | 相关文章 | 多维度评价
    21. 基于Raft算法改进的实用拜占庭容错共识算法
    王谨东, 李强
    《计算机应用》唯一官方网站    2023, 43 (1): 122-129.   DOI: 10.11772/j.issn.1001-9081.2021111996
    摘要397)   HTML14)    PDF (2615KB)(155)    收藏

    针对应用于联盟链的实用拜占庭容错(PBFT)共识算法可扩展性不足、通信开销大等问题,提出了一种基于Raft算法改进的实用拜占庭容错共识算法K-RPBFT。首先,将区块链分片,使用K-medoids聚类算法将所有节点划分为多个节点簇,每个节点簇构成一个分片,从而将全局共识改进为分层次的多中心共识;然后,每个分片的聚类中心节点之间使用PBFT算法进行共识,而在分片内部使用基于监督节点改进的Raft算法进行共识。K-RPBFT算法的片内监督机制赋予了Raft算法一定的拜占庭容错能力,并提升了算法的安全性。实验分析表明,相较于PBFT算法,K-RPBFT算法在具备拜占庭容错能力的同时能够大幅降低共识的通信开销与共识时延,提升共识效率与吞吐量,并且具有良好的可扩展性与动态性,使联盟链能够应用于更广泛的场景中。

    图表 | 参考文献 | 相关文章 | 多维度评价
    22. 基于深度学习的标签噪声学习算法综述
    伏博毅, 彭云聪, 蓝鑫, 秦小林
    《计算机应用》唯一官方网站    2023, 43 (3): 674-684.   DOI: 10.11772/j.issn.1001-9081.2022020198
    摘要390)   HTML39)    PDF (2083KB)(274)    PDF(mobile) (733KB)(19)    收藏

    在深度学习领域中,大量正确标注的样本对于模型的训练和学习至关重要。然而,在实际的应用场景中,标注数据的成本很高,同时标注的样本质量会受人工标注的主观因素或工具技术的影响,在标注过程中无法避免标签噪声的产生。因此,现有的训练数据都存在一定的标签噪声,如何有效地训练带标签噪声的训练数据成为了研究的热点。围绕基于深度学习的标签噪声学习算法,首先详细阐述了标签噪声学习问题的来源、分类和影响;然后依照机器学习的不同要素分析了基于数据、损失函数、模型、训练方式的四种标签噪声学习策略;随后提供了各种应用场景下学习标签噪声问题的基础框架;最后,给出一些优化思路,并展望了标签噪声学习算法面临的挑战与未来的发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    23. 基于再编码的无监督时间序列异常检测模型
    尹春勇, 周立文
    《计算机应用》唯一官方网站    2023, 43 (3): 804-811.   DOI: 10.11772/j.issn.1001-9081.2022010006
    摘要383)   HTML19)    PDF (1769KB)(173)    收藏

    针对时间序列的数据不平衡和高度复杂的时间相关性导致的异常检测准确率低的问题,以生成对抗网络(GAN)作为基础提出一种基于再编码的无监督时间序列异常检测模型RTGAN。首先,使用具有周期一致性的多个生成器保证生成样本的多样性,从而学习不同的异常模式;其次,使用堆叠式LSTM-dropout RNN捕获时间相关性;然后,使用二次编码在潜在空间中比较生成样本和真实样本之间的差异,并将此差异作为再编码误差当作异常分数的一部分,从而提高异常检测的准确率;最后,使用新的异常分数对单变量和多变量时间序列数据集进行异常检测。将所提模型与七种基线异常检测模型在单变量和多变量时间序列上进行了比较。实验结果表明,所提模型在所有数据集上均获得了最高的平均F1值(0.815),并且总体性能分别比原始自编码器(AE)模型Dense-AE和最新的基准模型USAD高出36.29%和8.52%。通过不同的信噪比(SNR)检测模型的健壮性,结果表明所提模型一直优于LSTM-VAE、USAD和OmniAnomaly,尤其在SNR为30%情况下,RTGAN的F1值分别比USAD和OmniAnomaly高出13.53%和10.97%。可见所提模型能有效提高异常检测的准确率和鲁棒性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    24. 基于图像翻转变换的对抗样本生成方法
    杨博, 张恒巍, 李哲铭, 徐开勇
    《计算机应用》唯一官方网站    2022, 42 (8): 2319-2325.   DOI: 10.11772/j.issn.1001-9081.2021060993
    摘要376)   HTML47)    PDF (1609KB)(217)    收藏

    面对对抗样本的攻击,深度神经网络是脆弱的。对抗样本是在原始输入图像上添加人眼几乎不可见的噪声生成的,从而使深度神经网络误分类并带来安全威胁。因此在深度神经网络部署前,对抗性攻击是评估模型鲁棒性的重要方法。然而,在黑盒情况下,对抗样本的攻击成功率还有待提高,即对抗样本的可迁移性有待提升。针对上述情况,提出基于图像翻转变换的对抗样本生成方法——FT-MI-FGSM(Flipping Transformation Momentum Iterative Fast Gradient Sign Method)。首先,从数据增强的角度出发,在对抗样本生成过程的每次迭代中,对原始输入图像随机翻转变换;然后,计算变换后图像的梯度;最后,根据梯度生成对抗样本以减轻对抗样本生成过程中的过拟合,并提升对抗样本的可迁移性。此外,通过使用攻击集成模型的方法,进一步提高对抗样本的可迁移性。在ImageNet数据集上验证了所提方法的有效性。相较于I-FGSM(Iterative Fast Gradient Sign Method)和MI-FGSM(Momentum I-FGSM),在攻击集成模型设置下,FT-MI-FGSM在对抗训练网络上的平均黑盒攻击成功率分别提升了26.0和8.4个百分点。

    图表 | 参考文献 | 相关文章 | 多维度评价
    25. 基于轻量化YOLOv4的交通信息实时检测方法
    郭克友, 李雪, 杨民
    《计算机应用》唯一官方网站    2023, 43 (1): 74-80.   DOI: 10.11772/j.issn.1001-9081.2021101849
    摘要373)   HTML12)    PDF (3019KB)(244)    收藏

    针对日常道路场景下的车辆目标检测问题,提出一种轻量化的YOLOv4交通信息实时检测方法。首先,制作了一个多场景、多时段的车辆目标数据集,并利用K-means++算法对数据集进行预处理;其次,提出轻量化YOLOv4检测模型,利用MobileNet?v3替换YOLOv4的主干网络,降低模型的参数量,并引入深度可分离卷积代替原网络中的标准卷积;最后,结合标签平滑和退火余弦算法,使用LeakyReLU激活函数代替MobileNet?v3浅层网络中原有的激活函数,从而优化模型的收敛效果。实验结果表明,轻量化YOLOv4的权值文件为56.4 MB,检测速率为85.6 FPS,检测精度为93.35%,表明所提方法可以为实际道路中的交通实时信息检测及其应用提供参考。

    图表 | 参考文献 | 相关文章 | 多维度评价
    26. 结合图自编码器与聚类的半监督表示学习方法
    杜航原, 郝思聪, 王文剑
    《计算机应用》唯一官方网站    2022, 42 (9): 2643-2651.   DOI: 10.11772/j.issn.1001-9081.2021071354
    摘要363)   HTML52)    PDF (1000KB)(282)    收藏

    节点标签是复杂网络中广泛存在的监督信息,对网络表示学习具有重要作用。基于此,提出了一种结合图自编码器与聚类的半监督表示学习方法(GAECSRL)。首先,以图卷积网络(GCN)和内积函数分别作为编码器和解码器,并构建图自编码器以形成信息传播框架;然后,在编码器生成的低维表示基础上增加k-means聚类模块,从而使图自编码器的训练过程和节点的类别分布划分形成自监督机制;最后,利用节点标签的判别信息对网络低维表示的类别划分进行指导,将网络表示生成、类别划分以及图自编码器的训练构建在一个统一的优化模型中,并获得融合节点标签信息的有效网络表示结果。在仿真实验中,将GAECSRL用于节点分类和链接预测任务。实验结果表明,相比DeepWalk、node2vec、全局结构信息图表示学习(GraRep)、结构化深度网络嵌入(SDNE)和用数据的转导式或归纳式嵌入预测标签和邻居(Planetoid),在节点分类任务中GAECSRL的Micro?F1指标提高了0.9~24.46个百分点,Macro?F1指标提高了0.76~24.20个百分点;在链接预测任务中,GAECSRL的AUC指标提高了0.33~9.06个百分点,说明GAECSRL获得的网络表示结果能有效提高节点分类和链接预测任务的性能。

    图表 | 参考文献 | 相关文章 | 多维度评价
    27. 基于事件表示的机器阅读理解模型
    王元龙, 刘晓敏, 张虎
    《计算机应用》唯一官方网站    2022, 42 (7): 1979-1984.   DOI: 10.11772/j.issn.1001-9081.2021050719
    摘要348)   HTML71)    PDF (916KB)(274)    收藏

    要真正理解一段语篇,在阅读理解过程对原文主旨线索的把握是非常重要的。针对机器阅读理解中主旨线索类型的问题,提出了基于事件表示的机器阅读理解分析方法。首先,通过线索短语从阅读材料中抽取篇章事件图,其中包括事件的表示、事件要素的抽取和事件关系的抽取等;然后,综合考虑事件的时间要素、情感要素以及每个词在文档中的重要性,采用TextRank算法选出线索相关的事件;最后,依据所选出的线索事件构建问题的答案。在收集了339道线索类题组成的测试集上,实验结果表明所提方法在BLEU和CIDEr评价指标上与基于TextRank算法的句子排序方法相比均有所提升,具体来说,BLEU-4指标提升了4.1个百分点,CIDEr指标提升了9个百分点。

    图表 | 参考文献 | 相关文章 | 多维度评价
    28. 基于改进RetinaNet的船舶检测算法
    凡文俊, 赵曙光, 郭力争
    《计算机应用》唯一官方网站    2022, 42 (7): 2248-2255.   DOI: 10.11772/j.issn.1001-9081.2021050831
    摘要348)   HTML7)    PDF (4946KB)(91)    PDF(mobile) (3371KB)(48)    收藏

    目前基于深度学习算法的目标检测技术在合成孔径雷达(SAR)图像船舶检测中取得了显著的成果,然而仍存在着小目标船舶和近岸密集排列船舶检测效果差的问题。针对上述问题,提出了基于改进RetinaNet的船舶检测算法。在传统RetinaNet算法的基础上,首先,将特征提取网络残差块中的卷积改进为分组卷积,以增加网络宽度,从而提高网络的特征提取能力;其次,在特征提取网络的后两个阶段加入注意力机制,让网络更加专注于目标区域,从而提升目标检测能力;最后,将软非极大值抑制(Soft-NMS)加入到算法中,降低算法对于近岸密集排列船舶检测的漏检率。在高分辨率SAR图像数据集(HRSID)和SAR船舶检测数据集(SSDD)上的实验结果表明,所提改进算法对于小目标船舶和近岸船舶的检测效果得到了有效提升,与当前优秀的目标检测模型Faster R-CNN、YOLOv3和CenterNet等相比,在检测精度和速度上更加优越。

    图表 | 参考文献 | 相关文章 | 多维度评价
    29. 深度学习的可解释性研究综述
    李凌敏, 侯梦然, 陈琨, 刘军民
    《计算机应用》唯一官方网站    2022, 42 (12): 3639-3650.   DOI: 10.11772/j.issn.1001-9081.2021091649
    摘要347)   HTML33)    PDF (4239KB)(278)    收藏

    近年来,深度学习在很多领域得到广泛应用;然而,由于深度神经网络模型的高度非线性操作,导致其可解释性较差,并常常被称为“黑箱”模型,无法应用于一些对性能要求较高的关键领域;因此,对深度学习的可解释性开展研究是很有必要的。首先,简单介绍了深度学习;然后,围绕深度学习的可解释性,从隐层可视化、类激活映射(CAM)、敏感性分析、频率原理、鲁棒性扰动测试、信息论、可解释模块和优化方法这8个方面对现有研究工作进行分析;同时,展示了深度学习在网络安全、推荐系统、医疗和社交网络领域的应用;最后,讨论了深度学习可解释性研究存在的问题及未来的发展方向。

    图表 | 参考文献 | 相关文章 | 多维度评价
    30. 基于图神经网络和注意力的双模态情感识别方法
    李路宝, 陈田, 任福继, 罗蓓蓓
    《计算机应用》唯一官方网站    2023, 43 (3): 700-705.   DOI: 10.11772/j.issn.1001-9081.2022020216
    摘要346)   HTML38)    PDF (1917KB)(271)    收藏

    针对生理信号情感识别问题,提出一种基于图神经网络(GNN)和注意力的双模态情感识别方法。首先,使用GNN对脑电(EEG)信号进行分类;然后,使用基于注意力的双向长短期记忆(Bi-LSTM)网络对心电(ECG)信号进行分类;最后,通过Dempster-Shafer证据理论融合EGG和ECG分类结果,从而提高情感识别任务的综合性能。为验证所提方法的有效性,邀请20名受试者参与情感激发实验,并收集了受试者的EGG、ECG信号。实验结果表明,所提方法的二分类准确率在valence维度和arousal维度分别为91.82%和88.24%,相较于单模态EEG方法分别提高2.65%和0.40%,相较于单模态ECG方法分别提高19.79%和24.90%。可见,所提方法能够有效地提高情感识别的准确率,为医疗诊断等领域提供决策支持。

    图表 | 参考文献 | 相关文章 | 多维度评价
    31. 基于中国写意风格迁移的动漫视频生成模型
    毛文涛, 吴桂芳, 吴超, 窦智
    《计算机应用》唯一官方网站    2022, 42 (7): 2162-2169.   DOI: 10.11772/j.issn.1001-9081.2021050836
    摘要345)   HTML6)    PDF (5691KB)(83)    收藏

    目前生成式对抗网络(GAN)已经被用于图像的动漫风格转换。然而,现有基于GAN的动漫生成模型主要以日本动漫和美国动漫为对象,集中在写实风格的提取与生成,很少关注到中国风动漫中写意风格的迁移,因此限制了GAN在国内广大动漫制作市场中的应用。针对这一问题,通过将中国写意风格融入到GAN模型,提出了一种新的中国风动漫生成式对抗网络模型CCGAN,用以自动生成具有中国写意风格的动漫视频。首先,通过在生成器中增加反向残差块,构造了一个轻量级的深度神经网络模型,以降低视频生成的计算代价。其次,为了提取并迁移中国写意风格中图像边缘锐利、内容构造抽象、描边线条具有水墨质感等性质,在生成器中构造了灰度样式损失和颜色重建损失,以约束真实图像和中国风样例图像在风格上的高层语义一致性,并且在判别器中构造了灰度对抗损失和边缘促进对抗损失,以约束重构图像与样例图像保持相同的边缘特性。最终,采用Adam算法最小化上述损失函数,从而实现风格迁移,并将重构图像组合为视频。实验结果表明,与目前最具代表性的风格迁移模型CycleGAN与CartoonGAN相比,所提CCGAN可从以《中国唱诗班》为例的中国风动漫中有效地学习到中国写意风格,同时显著降低了计算代价,适合于大批量动漫视频的快速生成。

    图表 | 参考文献 | 相关文章 | 多维度评价
    32. 基于强化学习的交通情景问题决策优化
    罗飞, 白梦伟
    《计算机应用》唯一官方网站    2022, 42 (8): 2361-2368.   DOI: 10.11772/j.issn.1001-9081.2021061012
    摘要338)   HTML17)    PDF (735KB)(131)    收藏

    在复杂交通情景中求解出租车路径规划决策问题和交通信号灯控制问题时,传统强化学习算法在收敛速度和求解精度上存在局限性;因此提出一种改进的强化学习算法求解该类问题。首先,通过优化的贝尔曼公式和快速Q学习(SQL)机制,以及引入经验池技术和直接策略,提出一种改进的强化学习算法GSQL-DSEP;然后,利用GSQL-DSEP算法分别优化出租车路径规划决策问题中的路径长度与交通信号灯控制问题中的车辆总等待时间。相较于Q学习、快速Q学习(SQL)、、广义快速Q学习(GSQL)、Dyna-Q算法,GSQL-DSEP算法在性能测试中降低了至少18.7%的误差,在出租车路径规划决策问题中使决策路径长度至少缩短了17.4%,在交通信号灯控制问题中使车辆总等待时间最多减少了51.5%。实验结果表明,相较于对比算法,GSQL-DSEP算法对解决交通情景问题更具优势。

    图表 | 参考文献 | 相关文章 | 多维度评价
    33. 基于改进注意力机制的交通标志检测算法
    张新宇, 丁胜, 杨治佩
    《计算机应用》唯一官方网站    2022, 42 (8): 2378-2385.   DOI: 10.11772/j.issn.1001-9081.2021061005
    摘要332)   HTML27)    PDF (1664KB)(219)    收藏

    针对交通标志在某些场景中存在分辨率过低、被覆盖等环境因素影响导致在目标检测任务中出现漏检、误检的情况,提出一种基于改进注意力机制的交通标志检测算法。首先,针对交通标志因破损、光照等环境影响造成图像分辨率低从而导致网络提取图像特征信息有限的问题,在主干网络中添加注意力模块以增强目标区域的关键特征;其次,特征图中相邻通道间的局部特征由于感受野重叠而存在一定的相关性,用大小为k的一维卷积代替通道注意力模块中的全连接层,以达到聚合不同通道信息和减少额外参数量的作用;最后,在路径聚合网络(PANet)的中、小尺度特征层引入感受野模块来增大特征图的感受野以融合目标区域的上下文信息,从而提升网络对交通标志的检测能力。在中国交通标志检测数据集(CCTSDB)上的实验结果表明,所提出的YOLOv4(You Only Look Once v4)改进算法在引进极少的参数量与原算法检测速度相差不大的情况下,平均精确率均值(mAP)达96.88%,mAP提升了1.48%;而与轻量级网络YOLOv5s相比,在单张检测速度慢10 ms的情况下,所提算法mAP比YOLOv5s高3.40个百分点,检测速度达到40?frame/s,说明该算法完全满足目标检测实时性的要求。

    图表 | 参考文献 | 相关文章 | 多维度评价
    34. 融合多语义特征的命名实体识别方法
    左亚尧, 陈皓宇, 陈致然, 洪嘉伟, 陈坤
    《计算机应用》唯一官方网站    2022, 42 (7): 2001-2008.   DOI: 10.11772/j.issn.1001-9081.2021050861
    摘要330)   HTML20)    PDF (2326KB)(147)    收藏

    针对语言普遍存在的字符间非线性关系,为捕获更丰富的语义特征,提出了一种基于图卷积神经网络(GCN)和自注意力机制的命名实体识别(NER)方法。首先,借助深度学习方法有效提取字符特征的能力,采用GCN学习字符间的全局语义特征,并且采用双向长短时记忆网络(BiLSTM)提取字符的上下文依赖特征;其次,融合以上特征并引入自注意力机制计算其内部重要度;最后,使用条件随机场(CRF)从融合特征中解码出最优的编码序列,并以此作为实体识别的结果。实验结果表明,与单一采用BiLSTM和CRF的方法相比,所提方法在微软亚洲研究院(MSRA)数据集和BioNLP/NLPBA 2004数据集上的精确率分别至少提高了2.39%和15.2%。可见该方法在中文和英文数据集上都具备良好的序列标注能力,且泛化能力较强。

    图表 | 参考文献 | 相关文章 | 多维度评价
    35. 基于混合特征建模的图卷积网络方法
    李卓然, 冶忠林, 赵海兴, 林晶晶
    《计算机应用》唯一官方网站    2022, 42 (11): 3354-3363.   DOI: 10.11772/j.issn.1001-9081.2021111981
    摘要329)   HTML14)    PDF (3410KB)(96)    收藏

    对于网络中拥有的复杂信息,需要更多的方式抽取其中的有用信息,但现有的单特征图神经网络(GNN)无法完整地刻画网络中的相关特性。针对该问题,提出基于混合特征的图卷积网络(HDGCN)方法。首先,通过图卷积网络(GCN)得到节点的结构特征向量和语义特征向量;然后,通过改进基于注意力机制或门控机制的聚合函数选择性地聚合语义网络节点的特征,增强节点的特征表达能力;最后,通过一种基于双通道图卷积网络的融合机制得到节点的混合特征向量,将节点的结构特征和语义特征联合建模,使特征之间互相补充,提升该方法在后续各种机器学习任务上的表现。在CiteSeer、DBLP和SDBLP三个数据集上进行实验的结果表明,与基于结构特征训练的GCN相比,HDGCN在训练集比例为20%、40%、60%、80%时的Micro?F1值平均分别提升了2.43、2.14、1.86和2.13个百分点,Macro?F1值平均分别提升了1.38、0.33、1.06和0.86个百分点。用拼接或平均值作为融合策略时,准确率相差不超过0.5个百分点,可见拼接和平均值均可作为融合策略。HDGCN在节点分类和聚类任务上的准确率高于单纯使用结构或语义网络训练的模型,并且在输出维度为64、学习率为0.001、2层图卷积层和128维注意力向量时的效果最好。

    图表 | 参考文献 | 相关文章 | 多维度评价
    36. 基于卷积神经网络和Transformer的手写体英文文本识别
    张显杰, 张之明
    《计算机应用》唯一官方网站    2022, 42 (8): 2394-2400.   DOI: 10.11772/j.issn.1001-9081.2021091564
    摘要322)   HTML39)    PDF (703KB)(186)    收藏

    手写体文本识别技术可以将手写文档转录成可编辑的数字文档。但由于手写的书写风格迥异、文档结构千变万化和字符分割识别精度不高等问题,基于神经网络的手写体英文文本识别仍面临着许多挑战。针对上述问题,提出基于卷积神经网络(CNN)和Transformer的手写体英文文本识别模型。首先利用CNN从输入图像中提取特征,而后将特征输入到Transformer编码器中得到特征序列每一帧的预测,最后经过链接时序分类(CTC)解码器获得最终的预测结果。在公开的IAM(Institut für Angewandte Mathematik)手写体英文单词数据集上进行了大量的实验结果表明,该模型获得了3.60%的字符错误率(CER)和12.70%的单词错误率(WER),验证了所提模型的可行性。

    图表 | 参考文献 | 相关文章 | 多维度评价
    37. 基于改进PP-YOLO和Deep-SORT的多无人机实时跟踪算法
    马峻, 姚震, 徐翠锋, 陈寿宏
    《计算机应用》唯一官方网站    2022, 42 (9): 2885-2892.   DOI: 10.11772/j.issn.1001-9081.2021071146
    摘要317)   HTML8)    PDF (2914KB)(369)    收藏

    无人机(UAV)目标尺寸较小,多架无人机之间特征也不明显,且鸟类和飞虫的干扰给无人机目标的准确检测和稳定跟踪带来了巨大挑战。针对传统目标检测算法对小目标无人机检测性能差、跟踪不稳定的问题,提出一种基于改进PP-YOLO和Deep-SORT的多无人机实时跟踪算法。首先,将压缩-激励模块融入PP-YOLO检测算法中,以实现对无人机目标的特征提取和检测;其次,在ResNet50-vd结构中引入Mish激活函数,以解决反向传播过程中的梯度消失问题,并进一步提升检测精度;然后,采用Deep-SORT算法来实时跟踪无人机目标,并将提取外观特征的主干网络更换为ResNet50,从而改善原有网络对微小外观感知能力弱的状况;最后,引入损失函数Margin Loss,既提高了类别可分性,又加强了类内紧度和类间差异。实验结果表明,所提算法的检测平均精度均值(mAP)相比原始PP-YOLO算法提升了2.27个百分点,跟踪准确性相对于原始Deep-SORT算法提升了4.5个百分点。所提算法的跟踪准确性可达91.6%,能够实时跟踪600 m以内多架无人机目标,有效解决了跟踪过程中的“丢帧”问题。

    图表 | 参考文献 | 相关文章 | 多维度评价
    38. 基于双自编码器和Transformer网络的异常检测方法
    周佳航, 邢红杰
    《计算机应用》唯一官方网站    2023, 43 (1): 22-29.   DOI: 10.11772/j.issn.1001-9081.2021111983
    摘要312)   HTML15)    PDF (1853KB)(145)    收藏

    基于自编码器(AE)的异常检测方法利用重构误差判断待测样本是正常数据还是异常数据。然而,上述方法在正常数据与异常数据上产生的重构误差非常接近,导致部分异常数据很容易被错分为正常数据。为解决上述问题,提出一种由两个并行的AE和一个Transformer网络组成的异常检测方法——DATN-ND。首先,Transformer网络利用输入样本的瓶颈特征生成伪异常数据的瓶颈特征,从而在训练集中增加异常数据信息;其次,双AE将带有异常数据信息的瓶颈特征尽可能地重构为正常数据,增加异常数据与正常数据的重构误差差别。与记忆增强自编码器(MemAE)相比,DATN-ND在MNIST、Fashion-MNIST、CIFAR-10数据集上ROC曲线下面积(AUC)分别提升6.8、12.0和2.5个百分点。实验结果表明,DATN-ND能够有效扩大正常数据和异常数据在重构误差上的差别。

    图表 | 参考文献 | 相关文章 | 多维度评价
    39. 基于改进的局部结构熵复杂网络重要节点挖掘
    李鹏, 王世林, 陈光武, 闫光辉
    《计算机应用》唯一官方网站    2023, 43 (4): 1109-1114.   DOI: 10.11772/j.issn.1001-9081.2022040562
    摘要312)   HTML23)    PDF (1367KB)(151)    收藏

    识别复杂网络中的关键节点对优化网络结构以及信息的有效传播起着至关重要的作用。局部结构熵(LE)利用局部网络对整个网络的影响代替节点对整个网络的影响以识别重要节点,然而LE未考虑高聚集性网络和节点与邻居节点形成环的情况,存在一定的局限性。针对以上不足,首先,提出了改进LE的节点重要性评价方法PLE(Penalized Local structural Entropy),即在LE的基础上引入集聚系数(CC)作为惩罚项,从而适当惩罚网络中的高聚集性节点;其次,由于PLE的惩罚项对三元闭包结构上的节点惩罚力度过大,又提出了PLE的改进方法PLEA(Penalized Local structural Entropy Advancement),即在惩罚项前引入一个控制系数,以控制惩罚力度。对5个不同规模的真实网络进行选择性攻击实验,实验结果表明,在美国西部各州电网和美国航空网两个网络中,与LE方法相比,PLEA的识别准确率分别提升了26.3%和3.2%;与K-Shell(KS)方法相比,PLEA的识别准确率分别提升了380%和5.43%;与DCL(Degree and Clustering coefficient and Location)方法相比,PLEA的识别准确率分别提升了14.4%和24%。同时,PLEA识别的重要节点对网络造成的破坏更大,验证了引入CC作为惩罚项的合理性,以及PLEA的有效性和优越性。PLEA综合考虑了节点的邻居个数和节点的局部网络结构,计算简单,对于刻画大规模网络的可靠性与抗毁性具有十分重要的意义。

    图表 | 参考文献 | 相关文章 | 多维度评价
    40. 基于改进YOLOv3的多尺度目标检测算法
    张丽莹, 庞春江, 王新颖, 李国亮
    《计算机应用》唯一官方网站    2022, 42 (8): 2423-2431.   DOI: 10.11772/j.issn.1001-9081.2021060984
    摘要311)   HTML18)    PDF (1714KB)(169)    收藏

    为了进一步提高多尺度目标检测的速度和精度,解决小目标检测易造成的漏检、错检以及重复检测等问题,提出一种基于改进YOLOv3的目标检测算法实现多尺度目标的自动检测。首先,在特征提取网络中对网络结构进行改进,在残差模块的空间维度中引入注意力机制,对小目标进行关注;然后,利用密集连接网络(DenseNet)充分融合网络浅层信息,并用深度可分离卷积替换主干网络中的普通卷积,减少模型的参数量,提升检测速率。在特征融合网络中,通过双向金字塔结构实现深浅层特征的双向融合,并将3尺度预测变为4尺度预测,提高了多尺度特征的学习能力;在损失函数方面,选取GIoU(Generalized Intersection over Union)作为损失函数,提高目标识别的精度,降低目标漏检率。实验结果表明,基于改进YOLOv3(You Only Look Once v3)的目标检测算法在Pascal VOC测试集上的平均准确率均值(mAP)达到83.26%,与原YOLOv3算法相比提升了5.89个百分点,检测速度达22.0 frame/s;在COCO数据集上,与原YOLOv3算法相比,基于改进YOLOv3的目标检测算法在mAP上提升了3.28个百分点;同时,在进行多尺度的目标检测中,算法的mAP有所提升,验证了基于改进YOLOv3的目标检测算法的有效性。

    图表 | 参考文献 | 相关文章 | 多维度评价
2023年 43卷 5期
刊出日期: 2023-05-10
文章目录
过刊浏览
荣誉主编:张景中
主  编:徐宗本
副主编
:申恒涛 夏朝晖

国内邮发代号:62-110
国外发行代号:M4616
地址:四川成都双流区四川天府新区
   兴隆街道科智路1369号
   中科信息(科学城园区) B213
   (计算机应用编辑部)
电话:028-85224283-803
   028-85222239-803
网址:www.joca.cn
E-mail: bjb@joca.cn
期刊微信公众号
CCF扫码入会