|
1.
基于发现者预选择机制的自适应群搜索算法
于长青 王竹荣
计算机应用
2013, 33 (11):
3102-3106.
为克服群搜索(GSO)算法早熟的缺点,提高算法收敛速度,提出一种基于发现者预选择机制的自适应群搜索(PSAGSO)算法。首先,依据发现者追随者模型,采用预选择机制,用倒序变异算子产生新发现者,来引导追随者寻优的方向,有效地维持了群体中个体的多样性;其次,提出一种基于线性递减的动态自适应方法来调整游荡者的分布比例,以提高种群中个体的活力,有利于算法跳出局部最优。通过对12个基准函数进行测试。对于30维函数优化,PSAGSO算法的测试数据优于He等(HE S, WU Q H, SAUNDERS J R. Group search optimizer: an optimization algorithm inspired by animal searching behavior. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 973-990)提供的数据;对于300维函数优化问题,PSAGSO算法的性能更佳。实验结果表明,PSAGSO克服了群搜索优化算法的不足,在一定程度上提高了算法的收敛速度和收敛精度。
相关文章 |
多维度评价
|
|