聚合不同用户的偏好时,基于序数偏好可以解决不同用户评价准则不一致问题。但用户因为候选项目过多、沟通成本高等原因不能提供完整序数偏好,影响了在线服务信誉度量、群体决策等场景中聚合结果的可靠性和准确性,而现有的预测方法未充分考虑用户群体偏好分布的多样性。针对这一问题,提出一种利用混合Plackett-Luce(PL)模型的不完整序数偏好预测(MixPLPP)方法。首先基于用户现有偏好采样完整拓展排序,其次使用采样的完整排序学习混合PL模型,再次设计基于后验概率最大化的模型选择策略为用户选择模型,最后利用所选模型预测用户完整偏好。在公开数据集Movielens上的实验结果表明,所提方法的预测准确率和Kendall秩相关系数(Kendall CC),相较于向量相似度排序(VSRank)算法提升了5.0%和9.2%;相较于基于确定性的偏好补全(CPC)提升了1.5%和3.5%;相较于BayesMallows-4提升了0.9%和2.2%。实验结果验证了所提方法具有良好的预测能力,在多个数据集上的预测效果都更好。