针对基于传统深度学习的视频预测中对数据空间特征提取效果不佳及预测精度低的问题,提出一种结合内卷与卷积算子(CICO)的视频预测模型。该模型主要通过以下三个方面提高视频序列的预测性能:首先,采用不同大小的卷积核增强对数据多粒度空间特征的提取能力,较大的卷积核能够提取更大空间范围的特征,而较小的卷积核可更精确地捕获视频目标的运动细节,实现对目标多角度表征学习;其次,用计算效率更高、参数更少的内卷算子替代核较大的卷积算子,内卷通过高效的通道间交互避免了大量的不必要参数,在降低计算和存储成本的同时提升模型预测能力;最后,引入核为1×1的卷积进行线性映射,增强不同特征之间的联合表达,提高了模型参数的利用效率并增强了预测的鲁棒性。通过多个数据集对该模型进行全面测试,结果表明,相较于目前最优的SimVP(Simpler yet better Video Prediction)模型,所提模型在多项指标上均有显著提升。在移动手写数据集上,均方误差和平均绝对误差分别降低25.2%和17.4%;在北京交通数据集上,均方误差降低1.2%;在人体行为数据集上,结构相似性指数和峰值信噪比分别提高0.66%和0.47%。可见,所提模型在提升视频预测精度方面十分有效。
现有深度图匹配模型在节点特征提取阶段常利用图卷积网络(GCN)学习节点的特征表示。然而,GCN对节点特征的学习能力有限,影响了节点特征的可区分性,造成节点的相似性度量不佳,最终导致模型的匹配精度受损。为解决这一问题,提出一种基于自注意力网络的深度图匹配模型。所提模型在节点特征提取阶段使用新的自注意力网络来学习节点特征,其原理是通过空间编码器和自注意力机制分别学习节点的空间结构以及所有节点之间的联系,从而改善节点的特征描述。此外,为了减小放松图匹配问题所带来的精度损失,将图匹配问题建模为整数线性规划问题,在图匹配问题的节点匹配基础上增加结构匹配约束,以及引入高效的组合优化求解器来计算图匹配问题的局部最优解。实验结果表明,在PASCALVOC数据集上,与PCA-GM相比,所提模型在20类图像上的匹配精度平均值提高了14.8个百分点;在Willow Object数据集上,所提模型在5类图像上的匹配精度平均值提高了7.3个百分点,并且在自行车、植物等目标匹配任务上达到了最佳的效果。
蛋白质相互作用(PPI)网络中存在大量不确定性及已知蛋白质复合物数据的不完整性,单独地根据结构信息进行搜索或对已知复合物进行监督学习的方法在识别蛋白质复合物的准确性上存在不足。对此,提出一种XGBoost模型与复合物拓扑结构信息相结合的搜索方法(XGBP)。首先,根据复合物拓扑结构信息进行特征提取;然后,把所提取的特征用XGBoost模型进行训练;最后,将拓扑结构信息与监督学习方法相结合,建立特征与复合物之间的映射关系以提高蛋白质复合物预测的准确性。该算法分别与目前流行的马尔可夫聚类算法(MCL)、极大团聚类方法(CMC)、基于核心-附属结构算法(COACH)、快速层级聚类算法(HC-PIN)、基于重叠邻居的扩展聚类(ClusterONE)、分子复合物检测算法(MCODE)、基于不确定图模型的蛋白质复合物检测方法(DCU)和加权核心-附属算法(WCOACH)这八种非监督学习算法和三种监督学习方法贝叶斯网络(BN)、支持向量机(SVM)、回归模型(RM)进行比较,所提方法在精准度、敏感度、F-measure方面显示出良好的性能。
针对目前传统消化道疾病诊断正确率低、检查过程痛苦等问题,设计了一种利用无线通信技术将肠道内图像数据传输到体外的胶囊内窥镜系统.首先,通过图像采集模块获得胃肠道内的图像;然后,由数字无线传输系统将图像数据发送至体外;最后,体外接收端将接收到的数据快速上传到PC机进而恢复显示图像.实验结果表明,利用MSP430和ZL70102设计的无线传输系统具有体积小、功耗低、速率高的特点,相比现有的传输模拟信号的胶囊内窥镜,此数字无线通信系统的抗干扰能力强,图像数据的传输正确率能够达到80%,功耗仅为31.6 mW.
为抵抗翻拍图像对人脸识别等认证系统的攻击,提出一种人脸图像梯度方向预测算法。通过自适应高斯同态滤波进行光照补偿增强真实活体图像与翻拍图像的对比度,用八方向Sobel算子与像元卷积方向预测,并使用支持向量机(SVM)分类器设计图像分类器判别两类图像。抽取国内外数据库(南京航空航天大学与耶鲁大学人脸库)活体人脸与翻拍人脸共522张进行实验,检测率达到99.51%;另用三星Galaxy Nexus手机拍摄261张真实人脸,同时进行翻拍,得到样本库522张人脸,实验检测率达到98.08%,特征提取用时167.04s。结果表明能有效地检测分类出真实人脸照片与翻拍假冒照片,并具有较高的特征提取效率。
针对多标签数据的标签相关性和高维问题,提出一种基于奇异值分解—偏最小二乘回归的多标签分类算法,该算法可以对多标签数据进行维数约简和回归分析。首先,将类别标签集合作为整体处理,对标签相关性进行考察; 其次,利用奇异值分解(SVD)技术得到样本和标签空间的得分向量,实施降维; 最后,在偏最小二乘回归(PLSR)的基础上构建多标签分类模型。实验结果表明,在四种维数较高的真实数据集上,该算法可以获得有效的分类结果。