Toggle navigation
首页
期刊介绍
期刊简介
历史沿革
收录情况
获奖情况
引用指标
编委会
期刊在线
文章推荐
过刊浏览
专辑专刊
下载排行
阅读排行
投稿指南
组稿方向
投稿须知
论文模板
常见问题
署名变更申请
单位变更申请
版权转让协议
中图分类号
引言书写要求
参考文献著录格式
插图与表格规范
英文摘要书写要求
收费标准
学术诚信
联系我们
编辑部联系方式
位置示意图
期刊订阅办法
广告合作
English
期刊
出版年
关键词
结果中检索
(((周文峰[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
求解排列组合问题的解空间动态缩减策略
李章洪, 梁晓磊, 田梦丹, 周文峰
计算机应用 2020, 40 (
7
): 2016-2020. DOI:
10.11772/j.issn.1001-9081.2019112006
摘要
(
357
)
PDF
(862KB)(
420
)
可视化
收藏
针对一般群智能算法求解大规模排列组合问题时搜索空间大从而影响群体搜索效率的问题,提出了一种解空间动态缩减(SSDC)策略,以动态减少算法搜索空间。该策略中,首先通过智能算法对排列组合优化问题两次初步求解,对获得的两个解中重复的片段进行识别和融合,将融合成的新节点代入原解空间进行解空间缩小更新;而后在下一次智能算法求解的过程中,对缩小的可行空间进行搜索,从而提升个体在有限空间内的搜索效率,降低搜索时间成本。基于5个高维标准旅行商问题(TSP)和2个车辆路径优化问题对融合新策略的多种群智能算法进行测试。实验结果表明融合所提策略的群智能算法在搜索精度和稳定性上均要优于对应的原算法,证明所提解空间动态缩减策略可以有效改善算法的性能。
参考文献
|
相关文章
|
多维度评价
Select
2.
具有拓扑时变和搜索扰动的混合粒子群优化算法
周文峰, 梁晓磊, 唐可心, 李章洪, 符修文
计算机应用 2020, 40 (
7
): 1913-1918. DOI:
10.11772/j.issn.1001-9081.2019112022
摘要
(
452
)
PDF
(1193KB)(
532
)
可视化
收藏
粒子群优化(PSO)算法在求解复杂多峰函数时极易早熟,陷入局部最优无法跳出。研究表明改变粒子间的拓扑结构和调整算法的迭代机制有助于改善种群的多样性,提高算法的寻优能力。因此,提出一种具有拓扑时变和搜索扰动的混合粒子群优化(HPSO-TS)算法。该算法采用
K
-medoids聚类算法对粒子群进行动态分簇,形成多个异构子群,以利于子群内粒子间进行信息流通。在速度更新中,增加簇最优粒子的引导,并引入非线性变化极值扰动,帮助粒子搜索更多的区域。而后在位置迭代中引入花授粉算法(FPA)中的转换概率,使粒子在全局搜索和局部搜索之间转换。在全局搜索时结合狮群算法中的母狮觅食机制对粒子的位置进行更新;在局部搜索时引入正弦扰动因子,帮助粒子跳出局部最优。实验结果表明所提算法在求解精度和鲁棒性方面明显优于FPA、PSO、改进粒子群算法(IPSO)、具有动态拓扑结构的粒子群算法(PSO-T);并且随着测试维度和次数的增加,这种优势更加明显。HPSO-TS算法所引入的拓扑时变策略和搜索扰动机制能有效地提高种群的多样性和粒子的活性,从而改善寻优能力。
参考文献
|
相关文章
|
多维度评价