期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 基于失焦模糊的焦点堆栈深度估计方法
周萌, 黄章进
《计算机应用》唯一官方网站    2023, 43 (9): 2897-2903.   DOI: 10.11772/j.issn.1001-9081.2022091342
摘要391)   HTML10)    PDF (3089KB)(165)    收藏

现有的单目深度估计方法通常使用图像语义信息来获取深度,忽略了另一个重要的线索——失焦模糊。同时,基于失焦模糊的深度估计方法通常把焦点堆栈或者梯度信息作为输入,没有考虑到焦点堆栈各图像层之间的模糊变化量小以及焦点平面两侧具有模糊歧义性的特点。针对现有焦点堆栈深度估计方法的不足,提出一种基于三维卷积的轻量化网络。首先,设计一个三维感知模块对焦点堆栈的模糊信息进行粗提取;然后,将提取到的信息与通道差分模块输出的焦点堆栈RGB通道差分特征进行级联,构建可以识别模糊歧义性模式的焦点体;最后,利用多尺度三维卷积来预测深度。实验结果表明,与AiFDepthNet(All in Focus Depth Network)等方法相比,所提方法在DefocusNet数据集上的平均绝对误差(MAE)等7个指标上取得了最优;在NYU Depth V2数据集上的4个指标上取得了最优,3个指标上取得了次优;同时,轻量化的设计使所提方法的推理时间分别缩短了43.92%~70.20%和47.91%~77.01%。可见,所提方法能有效地提高焦点堆栈深度估计的准确性及推理速度。

图表 | 参考文献 | 相关文章 | 多维度评价