Toggle navigation
首页
期刊介绍
期刊简介
历史沿革
收录情况
获奖情况
引用指标
编委会
期刊在线
文章推荐
过刊浏览
专辑专刊
下载排行
阅读排行
投稿指南
组稿方向
投稿须知
论文模板
常见问题
署名变更申请
单位变更申请
版权转让协议
中图分类号
引言书写要求
参考文献著录格式
插图与表格规范
英文摘要书写要求
收费标准
学术诚信
联系我们
编辑部联系方式
位置示意图
期刊订阅办法
广告合作
English
期刊
出版年
关键词
结果中检索
(((孟凡荣[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
融合地点影响力的兴趣点推荐算法
许朝, 孟凡荣, 袁冠, 李月娥, 刘肖
计算机应用 2019, 39 (
11
): 3178-3183. DOI:
10.11772/j.issn.1001-9081.2019051087
摘要
(
456
)
PDF
(935KB)(
377
)
可视化
收藏
为解决兴趣点(POI)推荐不准确和效率低的问题,深入分析社交因素和地理位置因素的影响,提出了一种融合地点影响力的POI推荐算法。首先,为了解决签到数据稀疏的问题,将2-度好友引入协同过滤算法中构建了社交影响模型,通过计算经历和好友相似度获取2-度好友对用户的社交影响;其次,深入考虑地理位置因素对POI推荐影响,在对社交网络分析的基础上构造了地点影响力模型,通过PageRank算法发现用户影响力,结合POI被签到次数计算地点影响力,获取准确的整体位置偏好,并使用核密度估计方法对用户签到行为建模和获取个性化地理位置特征;最后,融合社交模型和地理位置模型提高推荐准确性,并通过构造POI推荐候选集来提高推荐效率。在Gowalla和Yelp签到数据集上实验,结果表明所提算法能够快速完成POI推荐,在准确率和召回率指标上明显优于融合时间因素的位置推荐(LRT)和融合地理社交因素的个性化位置推荐(iGSLR)算法。
参考文献
|
相关文章
|
多维度评价
Select
2.
基于注意力与神经图灵机的语义关系抽取模型
张润岩, 孟凡荣, 周勇, 刘兵
计算机应用 2018, 38 (
7
): 1831-1838. DOI:
10.11772/j.issn.1001-9081.2017123009
摘要
(
837
)
PDF
(1298KB)(
792
)
可视化
收藏
针对语义关系抽取(语义关系分类)中长语句效果不佳和核心词表现力弱的问题,提出了一种基于词级注意力的双向神经图灵机(Ab-NTM)模型。首先,使用神经图灵机(NTM)作为循环神经网络(RNN)的改进,使用长短时记忆(LSTM)网络作为控制器,其互不干扰的存储特性可加强模型在长语句上的记忆能力;然后,构建注意力层组织词级上下文信息,使模型可以加强句中核心词的表现力;最后,输入分类器得到语义关系标签。在SemEval 2010 Task 8公共数据集上的实验表明,该模型获得了86.2%的得分,优于其他方法。
参考文献
|
相关文章
|
多维度评价
Select
3.
基于趋势特征表示的shapelet分类方法
闫欣鸣, 孟凡荣, 闫秋艳
计算机应用 2017, 37 (
8
): 2343-2348. DOI:
10.11772/j.issn.1001-9081.2017.08.2343
摘要
(
955
)
PDF
(1058KB)(
1077
)
可视化
收藏
Shapelet是一种具有辨识性的时间序列子序列,通过识别局部特征达到对时间序列准确分类的目的。原始shapelet发现算法效率较低,大量工作关注于提高shapelet发现的效率。然而,对于带有趋势变化的时间序列,采用典型的时间序列表示方法进行shapelet发现,容易造成序列中趋势信息的丢失。为了解决时间序列趋势信息丢失的问题,提出一种基于趋势特征的多样化top-
k
shapelet分类方法:首先采用趋势特征符号化方法对时间序列的趋势信息进行表示;然后针对序列的趋势特征符号获取shapelet候选集合;最后通过引入多样化top-
k
查询算法从候选集中选取
k
个最具代表性的shapelets。在时间序列的分类实验中,与传统分类算法相比,所提方法在11个数据集上的分类准确率均有提升;与FastShapelet算法相比,提升了运行效率,缩短了算法的运行时间,并在趋势信息明显的数据上效果显著。结果表明,所提方法能有效提高时间序列的分类准确率,提升算法运行效率。
参考文献
|
相关文章
|
多维度评价
Select
4.
基于轨迹结构的移动对象热点区域发现
吕绍仟, 孟凡荣, 袁冠
计算机应用 2017, 37 (
1
): 54-59. DOI:
10.11772/j.issn.1001-9081.2017.01.0054
摘要
(
691
)
PDF
(1176KB)(
568
)
可视化
收藏
针对现有热点区域发现算法难以从轨迹数据集中准确识别活动热点的问题,提出了基于轨迹结构的热点区域发现框架(TS_HS)。TS_HS由候选区域发现(CHSD)算法和热点区域过滤(HSF)算法组成。首先,使用基于网格相对密度的CHSD识别空间上的轨迹密集区域作为候选热点区域;然后,利用HSF根据候选区域中轨迹的活动特征和时间变化特征,筛选出移动对象活动频繁的热点区域。在Geolife数据集上进行的实验表明,与基于全局密度的热门区域发现算法(GD_HR)以及移动轨迹时空热点区域发现算法(SDHSRD)相比,TS_HS能更有效地解决多密度热点区域的识别问题。实验结果表明,TS_HS能够根据轨迹的活动特征准确发现移动对象的活动热点区域。
参考文献
|
相关文章
|
多维度评价
Select
5.
基于plateaued函数的平衡布尔函数构造
张轶毅, 孟凡荣, 张凤荣, 石记红
计算机应用 2016, 36 (
6
): 1563-1566. DOI:
10.11772/j.issn.1001-9081.2016.06.1563
摘要
(
646
)
PDF
(554KB)(
503
)
可视化
收藏
布尔函数在对称密码的设计和分析中起着重要的作用。通过对谱不相交函数集中子函数平衡性的问题的研究给出了包含4个plateaued函数的函数集中有3个为平衡函数的充分条件。在此基础上,基于3个平衡的谱不相交plateaued函数,一类特殊的布尔置换以及一个高非线性度平衡函数,提出了一个构造高非线性度平衡布尔函数的方法。通过分析可知,利用该方法可以构造代数次数达到最优、非线性度不小于2
2
k
-1
-2
k
-1
-2
k
/2
-2
⌈(
k
-1)/2⌉
的2
k
元平衡函数。
参考文献
|
相关文章
|
多维度评价
Select
6.
基于Markov模型与轨迹相似度的移动对象位置预测算法
宋路杰, 孟凡荣, 袁冠
计算机应用 2016, 36 (
1
): 39-43. DOI:
10.11772/j.issn.1001-9081.2016.01.0039
摘要
(
866
)
PDF
(939KB)(
660
)
可视化
收藏
针对低阶Markov模型预测精度较差,以及多阶Markov模型预测稀疏率高的问题,提出一种基于Markov模型与轨迹相似度(MMTS)的移动对象位置预测算法。该方法借鉴了Markov模型思想对移动对象的历史轨迹进行建模,并将轨迹相似度作为位置预测的重要因素,以Markov预测模型的预测结果集作为预测候选集,结合相似度因素得出最终预测结果。实验结果表明,与
k
阶Markov模型相比,该方法的预测性能不会随着训练样本大小及阶数
k
的变化受到很大的影响,并且在大幅降低
k
阶Markov模型预测稀疏率的同时将预测精度平均提高了8%以上。所提方法不仅解决了
k
阶Markov模型的预测稀疏率高及预测精度不足的问题;同时提高了预测的稳定性。
参考文献
|
相关文章
|
多维度评价