期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 基于时空序列的Conv-LSTM航班延误预测模型
屈景怡, 杨柳, 陈旭阳, 王茜
《计算机应用》唯一官方网站    2022, 42 (10): 3275-3282.   DOI: 10.11772/j.issn.1001-9081.2021091613
摘要518)   HTML13)    PDF (3421KB)(181)    收藏

精准的航班延误预测结果可以为大面积航班延误的预防提供巨大的参考价值。航班延误预测是在特定空间下做时间序列预测,然而目前已有预测方法多为两种或多种算法的结合,存在算法间的融合问题。针对上述问题,提出了一种综合考虑时空序列的卷积长短时记忆(Conv-LSTM)网络航班延误预测模型。所提模型在长短时记忆(LSTM)网络提取时间特征的基础上,将网络的输入和权重矩阵进行卷积来提取空间特征,从而充分利用数据集包含的时间和空间信息。实验结果表明,与LSTM、仅考虑空间信息的卷积神经网络(CNN)模型相比,Conv-LSTM模型的准确率分别提高了0.65个百分点和2.36个百分点。由此可见,同时考虑时空特性可以在航班延误问题中获得更精确的预测结果。此外,基于所提模型设计并实现了基于浏览器/服务器(B/S)架构的航班延误分析系统,并且该系统也可以应用于空中交通管理局流量控制中心。

图表 | 参考文献 | 相关文章 | 多维度评价
2. 基于团簇随机连接的CliqueNet航班延误预测模型
屈景怡, 曹磊, 陈敏, 董樑, 曹烨琇
计算机应用    2020, 40 (8): 2420-2427.   DOI: 10.11772/j.issn.1001-9081.2019112061
摘要428)      PDF (1315KB)(424)    收藏
针对目前民航运输业延误率较高,而传统算法难以解决高精度延误预测的问题,提出一种基于随机连接团簇网络(CliqueNet)航班延误预测模型。该模型首先对航班数据和相关气象数据进行融合;然后,充分利用改进后的网络模型对融合后的数据集进行特征提取;最后,使用Softmax分类器进行航班离港延误各等级的高精度预测。模型的主要特点是:在团簇特征层的随机连接,以及在转换层引入通道和空间注意力残差(CSAR)模块。前者以更为有效的连接方式传递特征信息;后者则对特征信息进行通道和空间维度的双重标定,以提高准确率。实验结果表明,对融合数据进行预测,引入随机连接和CSAR模块后,新模型的准确率分别提高了0.5%、1.3%,最终准确率能达到93.40%。
参考文献 | 相关文章 | 多维度评价
3. 基于双通道卷积神经网络的航班延误预测模型
吴仁彪, 李佳怡, 屈景怡
计算机应用    2018, 38 (7): 2100-2106.   DOI: 10.11772/j.issn.1001-9081.2018010037
摘要823)      PDF (1206KB)(441)    收藏
针对航班延误预测数据量大、特征提取困难而传统算法处理能力有限的问题,提出一种基于双通道卷积神经网络(DCNN)的航班延误预测模型。首先,该模型将航班数据和气象数据进行融合,应用DCNN进行自动特征提取,采用批归一化(BN)和Padding策略优化,提升到港延误等级的分类预测性能;然后,在卷积神经网络(CNN)基础上加入直通通道,以保证特征矩阵的无损传输,增强深度网络的畅通性;同时引入卷积衰减因子对卷积通道的特征矩阵进行稀疏性限制,控制不同网络深度的特征叠加比例,维持模型的稳定性。实验结果表明,所提模型与传统模型相比,具有更强的数据处理能力。通过数据融合,航班延误预测准确率可提高1个百分点;加深网络深度后,该模型能保证梯度的稳定,从而训练更深的网络,使准确率提升至92.1%。该基于DCNN算法的模型特征提取充分,预测性能优于对比模型,可更好地服务于民航决策。
参考文献 | 相关文章 | 多维度评价
4. 基于HBase和Hive的航班延误平台的存储方法
吴仁彪, 刘超, 屈景怡
计算机应用    2018, 38 (5): 1339-1345.   DOI: 10.11772/j.issn.1001-9081.2017102475
摘要485)      PDF (1151KB)(644)    收藏
针对我国目前航班延误平台的移植难、可扩展性差,无法适应民航高速发展所带来的大数据量存储的现状,设计了面向大数据的跨平台、高适用性与高扩展性的航班延误平台。该平台以大数据工具LeafLet为可视化载体,在地图界面实时显示航班轨迹并将轨迹数据加载至HBase数据库中,并且利用信息摘要算法(MD5)重新设计与优化航班数据表的行键,以解决其递增的飞行时间特性产生的"热点"问题;针对HBase过滤器多级查询的缺陷,提出了基于SolrCloud的关联查询算法,利用SolrCloud实现对行键与索引字段的分层存储,从而实现HBase二级快速索引;最后在HBase的历史航班数据与飞行计划数据基础上,构建基于Hive的海量航班信息数据仓库。实验结果显示,航班延误大数据平台的可扩展性与搭建的航班信息数据仓库可以满足民航对数据集中统一存储的需求,而多条件查询的响应速度与无二级索引的集群相比提高了上百倍,并且这种优势随着航班数据量的增长愈发明显。
参考文献 | 相关文章 | 多维度评价