Toggle navigation
首页
期刊介绍
期刊简介
历史沿革
收录情况
获奖情况
引用指标
编委会
期刊在线
文章推荐
过刊浏览
专辑专刊
下载排行
阅读排行
投稿指南
组稿方向
投稿须知
论文模板
常见问题
署名变更申请
单位变更申请
版权转让协议
中图分类号
引言书写要求
参考文献著录格式
插图与表格规范
英文摘要书写要求
收费标准
学术诚信
联系我们
编辑部联系方式
位置示意图
期刊订阅办法
广告合作
English
期刊
出版年
关键词
结果中检索
(((张奥[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
基于二维码视觉与激光雷达融合的高精度定位算法
栾佳宁, 张伟, 孙伟, 张奥, 韩冬
计算机应用 2021, 41 (
5
): 1484-1491. DOI:
10.11772/j.issn.1001-9081.2020081162
摘要
(
1003
)
PDF
(2182KB)(
1102
)
可视化
收藏
为解决以蒙特卡罗定位算法为代表的激光室内定位算法存在的定位精度差和抗机器人绑架性能差的问题,以及传统二维码定位算法环境布置复杂且对机器人运行轨迹有严格要求的问题,提出了一种融合二维码视觉和激光雷达数据的移动机器人定位算法。机器人首先利用机器视觉技术搜索检测环境中的二维码,然后将检测出二维码的位姿分别转换至地图坐标系下,并融合生成先验位姿信息。而后以此作为初始位姿进行点云对准以得到优化后的位姿。同时引入里程计-视觉监督机制,从而有效解决了包括二维码信息缺失、二维码识别错误等由环境因素带来的问题,并保证了位姿的平滑性。基于移动机器人的实验结果表明,所提算法比经典的自适应蒙特卡罗定位(AMCL)算法的雷达采样点平均误差下降了92%,单次位姿计算时间减少了88%,可有效解决机器人绑架问题,并应用于以仓储机器人为代表的室内移动机器人。
参考文献
|
相关文章
|
多维度评价
Select
2.
基于迁移学习与多标签平滑策略的图像自动标注
汪鹏, 张奥帆, 王利琴, 董永峰
计算机应用 2018, 38 (
11
): 3199-3203. DOI:
10.11772/j.issn.1001-9081.2018041349
摘要
(
846
)
PDF
(960KB)(
698
)
可视化
收藏
针对图像标注数据集标签分布不平衡问题,提出了基于标签平滑策略的多标签平滑单元(MLSU)。MLSU在网络模型训练过程中自动平滑数据集中的高频标签,使网络适当提升了低频标签的输出值,从而提升了低频标注词的标注性能。为解决图像标注数据集样本数量不足造成网络过拟合的问题,提出了基于迁移学习的卷积神经网络(CNN)模型。首先利用互联网上的大型公共图像数据集对深度网络进行预训练,然后利用目标数据集对网络参数进行微调,构建了一个多标签平滑卷积神经网络模型(CNN-MLSU)。分别在Corel5K和IAPR TC-12图像标注数据集上进行实验,在Corel5K数据集上,CNN-MLSU较卷积神经网络回归方法(CNN-R)的平均准确率与平均召回率分别提升了5个百分点和8个百分点;在IAPR TC-12数据集上,CNN-MLSU较两场
K
最邻近模型(2P
K
NN_ML)的平均召回率提升了6个百分点。实验结果表明,基于迁移学习的CNN-MLSU方法能有效地预防网络过拟合,同时提升了低频词的标注效果。
参考文献
|
相关文章
|
多维度评价