期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 基于信号时态逻辑的深度时序事件检测算法
张思齐, 张金俊, 王天一, 秦小林
《计算机应用》唯一官方网站    2025, 45 (1): 90-97.   DOI: 10.11772/j.issn.1001-9081.2024010131
摘要144)   HTML10)    PDF (1725KB)(145)    收藏

针对深度事件检测模型对复杂时序事件检测准确性不足和忽略了不同事件间相关性的问题,提出一种基于信号时态逻辑的深度时序事件检测算法DSTL (Deep Signal Temporal Logic)。该算法一方面引入信号时态逻辑框架,并用信号时态逻辑(STL)公式建模时间序列中的事件来综合考虑时间序列上事件的逻辑性和时态性;另一方面采用基于神经网络的基础分类器来检测原子事件的发生情况,并通过STL公式结构和语义来辅助检测复杂事件。另外,使用神经网络模块替代相应的逻辑连接词和时态逻辑算子,从而提供可GPU加速和梯度下降的神经网络模块。通过对6个时间序列数据集的实验,验证了该算法在时序事件检测方面的有效性,并把使用DSTL算法的模型与不使用该算法而使用多层感知机(MLP)、长短期记忆(LSTM)网络和Transformer的深度时间序列分类模型进行比较。实验结果表明,使用DSTL算法的模型在5种事件上的平均F1分数提升了约12%,其中3种跨时间点事件上的平均F1分数提升了约14%,且具备更好的可解释性。

图表 | 参考文献 | 相关文章 | 多维度评价
2. 交互式机器翻译综述
廖兴滨, 秦小林, 张思齐, 钱杨舸
《计算机应用》唯一官方网站    2023, 43 (2): 329-334.   DOI: 10.11772/j.issn.1001-9081.2021122067
摘要856)   HTML99)    PDF (1870KB)(541)    收藏

随着深度学习的发展和成熟,神经机器翻译的质量也越来越高,然而仍不完美,为了达到可接受的翻译效果,需要人工进行后期编辑。交互式机器翻译(IMT)是这种串行工作的一个替代,即在翻译过程中进行人工互动,由用户对翻译系统产生的候选翻译进行验证,并且,如有必要,由用户提供新的输入,系统根据用户当前的反馈生成新的候选译文,如此往复,直到产生一个使用户满意的输出。首先,介绍了IMT的基本概念以及当前的研究进展;然后,分类对一些常用方法和前沿工作加以介绍,并简述每个工作的背景和创新之处;最后,探讨了IMT的发展趋势和研究难点。

图表 | 参考文献 | 相关文章 | 多维度评价