期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 一种新的支持向量机大规模训练样本集缩减策略
朱方 顾军华 杨欣伟 杨瑞霞
计算机应用    2009, 29 (10): 2736-2740.  
摘要2943)      PDF (950KB)(1665)    收藏
支持向量机(SVM)在许多实际应用中由于训练样本集规模较大且具有类内混杂孤立点数据,引发了学习速度慢、存储需求量大、泛化能力降低等问题,成为直接使用该技术的瓶颈。针对这些问题,通过在点集理论的基础上分析训练样本集的结构,提出了一种新的支持向量机大规模训练样本集缩减策略。该策略运用模糊聚类方法快速的提取出潜在支持向量并去除类内非边界孤立点,在减小训练样本集规模的同时,能够有效地避免孤立点数据所造成的过学习现象,提高了SVM的泛化性能,在保证不降低分类精度的前提下提高训练速度。
相关文章 | 多维度评价
2. 公钥基础设施中证书撤销机制的研究与改进
徐成强;朱方金;史清华
计算机应用    2005, 25 (12): 2770-2771.  
摘要1642)      PDF (574KB)(1220)    收藏
从证书序列号出发,引用位标识指针将证书序列号缩减,以减少证书撤销列表(Certificate Revocation List,CRL)所需空间,提高CRL的查询速度,并成功构造了一棵新型撤销证书查询树。该树既继承了证书撤销树(Certificate Revocation Tree,CRT)证明一个证书的状态(是否被吊销)不需要整个CRT,而只与其中部分相关路径有关的优点,又克服了CRT在更新时几乎需要对整个树重新计算的缺点。该树在更新时仅需计算相关部分路径的数值,加速了撤销树的更新速度。
相关文章 | 多维度评价