期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 基于基因关联分析的贝叶斯网络疾病样本分类算法
李志杰, 廖旭红, 李元香, 李青蓝
《计算机应用》唯一官方网站    2024, 44 (11): 3449-3458.   DOI: 10.11772/j.issn.1001-9081.2024030398
摘要71)   HTML2)    PDF (644KB)(130)    收藏

基因表达数据作为生物学中一种特定类型的大数据,尽管基因表达值都是普通的实数值,但它们的相似性不是基于欧氏距离度量,而是基于基因表达值是否展现同升同降趋势。目前的基因贝叶斯网络以基因表达水平值为节点随机变量,没有体现这种子空间模式的相似性。因此,提出基于基因关联分析的贝叶斯网络疾病分类算法(BCGA),从带类标签的疾病样本-基因表达数据中学习贝叶斯网络并预测新疾病样本的分类。首先,将疾病样本离散化过滤以选择基因,并将降维后的基因表达值排序和置换为基因列下标;其次,分解基因列下标序列为长度为2的原子序列集合,而这个集合的频繁原子序列对应一对基因的关联关系;最后,通过基因关联熵度量因果关系,并用于贝叶斯网络结构学习。BCGA的参数学习也变得很容易,基因节点的条件概率分布只要统计该基因的原子序列和父节点基因的原子序列出现频次即可。在多个肿瘤和非肿瘤基因表达数据集上的实验结果表明,相较于已有的同类算法,BCGA的疾病分类准确率明显提高,分析时间有效缩短;另外,BCGA使用基因关联熵代替条件独立性,使用基因原子序列代替基因表达值,可以更好地拟合基因表达数据。

图表 | 参考文献 | 相关文章 | 多维度评价
2. 一种求解Shubert函数优化问题的演化算法
王轩 李元香
计算机应用   
摘要1861)      PDF (577KB)(902)    收藏
综合国内外演化计算研究现状,基于热力学中的自由能极小化原理, 设计了一个全新的热力学演化算法,并通过对于Shubert函数优化问题求解的数值试验,测试了热力学演化算法的优良性能,实验结果表明了热力学演化算法求出的解比一般演化算法求出的解更加接近于全局最优。
相关文章 | 多维度评价
3. 伪Zernike矩特征在图像重建中的应用
胡慧君,李元香,刘茂福
计算机应用    2005, 25 (03): 592-593.   DOI: 10.3724/SP.J.1087.2005.0592
摘要1019)      PDF (98KB)(1208)    收藏

简单介绍了描述图像形状特征的伪Zernike矩,给出了伪Zernike矩的定义;在讨论伪Zernike矩性质的基础上,指出可以使用基于伪Zernike矩的形状特征数据来重建图像,阐述了基于伪Zernike矩的形状特征数据进行图像重建的理论基础;实验结果证明了基于伪Zernike矩进行图像重建的可行性。

相关文章 | 多维度评价