期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 基于分数阶网络和强化学习的图像实例分割模型
李学明, 吴国豪, 周尚波, 林晓然, 谢洪斌
《计算机应用》唯一官方网站    2022, 42 (2): 574-583.   DOI: 10.11772/j.issn.1001-9081.2021020324
摘要510)   HTML16)    PDF (2853KB)(260)    收藏

针对目前的分数阶非线性模型图像特征提取能力不足导致分割精度较低的问题,提出一种基于分数阶网络和强化学习(RL)的图像实例分割模型,用来分割出图像中目标实例的高质量轮廓曲线。该模型共包含两层模块:1)第一层为二维分数阶非线性网络,主要采用混沌同步方法来获取图像中像素点的基础特征,并通过根据像素点间的相似性进行耦合连接的方式获取初步的图像分割结果;2)第二层通过RL思想将图像实例分割建立为一个马尔可夫决策过程(MDP),并利用建模过程中的动作-状态对、奖励函数和策略的设计来获取图像的区域结构和类别信息。最后将第一层获取到的像素特征和初步的图像分割结果与第二层获取到的区域结构和类别信息联合起来进行实例分割。在Pascal VOC2007 和Pascal VOC2012数据集上的实验结果表明,这种基于连续决策的图像实例分割模型与传统的分数阶模型相比,平均精度(AP)至少提升了15个百分点,不仅能够获取图像中目标物体的类别信息,而且进一步提升了对图像轮廓细节和细粒度信息的提取能力。

图表 | 参考文献 | 相关文章 | 多维度评价
2. 基于异构星型网络分析的药物推荐改进算法HIC-MedRank
邹林霖, 李学明, 李雪, 袁洪, 刘星
计算机应用    2017, 37 (8): 2368-2373.   DOI: 10.11772/j.issn.1001-9081.2017.08.2368
摘要603)      PDF (1110KB)(716)    收藏
伴随着医疗文献数据库的快速增长,缺乏经验的初级医师在为患者开处方时难以阅读大量的医疗文献来获得科学的决策辅助。2013年提出的MedRank算法从Medline数据库中提取医学信息异构星型网络,基于"有疗效的药物是由好的文章提及的,好的文章是由优秀的作者写的并刊登在高水平的期刊上"的假设,旨在为各类疾病的患者推荐最具有疗效的药物。该算法仍然存在几个问题:1)模型输入的疾病不是独立的疾病;2)推荐的结果不是具体的药物;3)没有考虑文章的发表时间等其他因素;4)没有定义判定作者、期刊、文章是"好的"的标准。对以上问题进行了研究并提出HIC-MedRank算法,该算法纳入作者的H指数、期刊的影响因子、文章的引用数作为评判作者、期刊、文章是否优秀的指标,并综合考虑文章的发表时间、支持机构、发表类型等因素,为高血压合并慢性肾脏病(CKD)患者推荐最佳的降压药物。在Medline数据集上的实验结果显示HIC-MedRank推荐的药物比MedRank算法推荐的药物更为精准,与主治医师投票选择的药物较为一致,与美国成人高血压治疗指南(JNC)推荐的药物一致性达到80%。
参考文献 | 相关文章 | 多维度评价
3. 基于用户回复内容观点支持度的评论有用性计算
李学明, 张朝阳, 佘维军
计算机应用    2016, 36 (10): 2767-2771.   DOI: 10.11772/j.issn.1001-9081.2016.10.2767
摘要458)      PDF (941KB)(787)    收藏
针对有监督评论有用性预测方法中的训练数据集难以构造,以及无监督方法缺乏对情感信息支撑的问题,提出基于语义和情感信息构建一种无监督模型,用于对评论有用性进行预测,同时考虑了评论和评论下回复内容对观点的支持度用来计算观点的有用性得分,进而得到评论的有用性。同时,提出结合句法分析和改进潜在狄利克雷分配(LDA)模型的评论摘要方法用于评论有用性预测模型中的观点提取,基于句法分析结果构建must-link和cannot-link两种约束条件指导主题模型学习,在保证召回率的同时提高模型准确率。该方法在实验数据集上能取得70%左右的 F1值和90%左右的排序准确率,且实例应用也表明该方法对结果具有较好的解释性。
参考文献 | 相关文章 | 多维度评价
4. 基于AdaBoost的微博垃圾评论识别方法
黄铃 李学明
计算机应用    2013, 33 (12): 3563-3566.  
摘要728)      PDF (623KB)(518)    收藏
针对微博上存在的大量垃圾评论,提出一种基于AdaBoost的微博垃圾评论识别方法。该方法首先提取表示微博评论的特征值向量,由8个特征值组成,然后通过AdaBoost算法在这些特征上训练出若干个比随机预测好的弱分类器,最后将得到的弱分类器加权集合成高精度的强分类器。从实际的热门新浪微博中提取评论数据集进行实验,结果表明所选取的8个特征是有效的,该方法对于微博垃圾评论的识别拥有较高的识别率。
相关文章 | 多维度评价
5. 基于lazy方法的数量型关联分类
李学明 李宾飞 杨涛 吴海燕
计算机应用    2013, 33 (08): 2184-2187.  
摘要990)      PDF (620KB)(617)    收藏
传统关联分类方法处理数量型数据时,“先离散,再学习”的步骤使新的测试样例可能无法找到合适的离散区间,形成离散盲目性问题。基于lazy的数量型关联分类作为一种新的关联分类法,它首先利用K-近邻分类思想为测试样例求得K-近邻作为新的训练数据集,然后对包含测试样例和K个近邻的数据集离散化,并在K-近邻组成的离散数据集上挖掘关联规则并构造分类器进行分类。最后,通过与传统CBA、CMAR、CPAR算法在7个常用UCI数量型数据集上进行的对比实验结果表明,基于lazy的数量型关联分类方法的平均分类准确率提高了0.66%~1.65%,证明了该方法的可行性。
参考文献 | 相关文章 | 多维度评价
6. 近似图包含搜索和索引技术的研究
吕金涛 李学明
计算机应用   
摘要1593)      PDF (1055KB)(1295)    收藏
在对图形数据库中的几种有代表性的传统相似性搜索及索引构造方法进行总结分析的基础上,探讨了近似图包含搜索区别于传统相似性搜索的特征,并且提出了一种针对近似图包含搜索的基于覆盖率和支持度对频繁子模式进行筛选的索引构造算法。实验结果验证了该方法的有效性。
相关文章 | 多维度评价