针对当前基于Transformer的图像去噪算法侧重于捕获图像的全局特征,而忽视局部特征对于恢复图像细节关键作用的问题,提出一种基于局部和全局特征解耦的图像去噪网络。该网络包含2个基于混合Transformer模块(HTB)的多尺度分支和1个基于卷积神经网络(CNN)的单尺度分支,旨在将HTB强大的全局建模能力与CNN的局部建模优势有机结合,生成上下文信息丰富且空间细节准确的输出。HTB采用自注意力机制自适应地对空间和通道维度的依赖关系建模,以激活范围更广的输入像素进行重建。鉴于不同分支间可能存在的信息冲突,设计特征传递模块,通过跨分支传递全局特征并抑制低频信息,从而确保各分支间的协同作用。实验结果表明,在真实世界图像数据集SIDD上,与基于Transformer的去噪网络Uformer相比,所提网络的峰值信噪比(PSNR)提高了0.09 dB,结构相似度(SSIM)提高了0.001;在合成图像数据集Urban100上,与多阶段去噪网络MSPNet(Multi-Stage Progressive denoising Network)相比,所提网络的平均PSNR提高了0.41 dB。可见,所提网络能有效去除图像噪声,并重建出更精细的纹理细节。
针对图像超分辨重建过程中原始高清图片与低质量图像之间缺乏依赖关系、深度网络中特征图信息不分主次重构导致的图像高频信息高精度重构困难的问题,提出一种融合迭代反馈与注意力机制的单幅图像超分辨重建方法。首先使用频率分解模块分别提取图像中的高、低频信息,并将二者分别处理,使网络重点关注提取出的高频细节部分,增强方法在图像细节上的复原能力;其次通过通道注意力机制将重建的重点放在有效特征所在的特征通道上,增强网络提取特征图信息的能力;然后采用迭代反馈的思想,在反复重建和比对过程中增加图像的还原程度;最后通过重建模块生成输出图像。在Set5、Set14、BSD100、Urban100和Manga109基准数据集上的2倍、4倍和8倍放大实验中,与主流超分辨率方法相比,所提方法表现出更优越的性能。在Manga109数据集的8倍放大实验中,相较于传统插值方法和基于卷积神经网络的图像超分辨率算法(SRCNN),所提方法的峰值信噪比(PSNR)均值分别提升了约3.01 dB和2.32 dB。实验结果表明:所提方法能够降低重建过程中出现的误差,并有效重建出更精细的高分辨率图像。
针对目前基于惯性传感的动作捕捉系统存在的姿态漂移、实时性不强和价格较高的问题,设计了一种低功耗、低成本,能够有效克服姿态数据漂移的人体实时动作捕捉系统。首先通过人体运动学原理,构建分布式关节运动捕捉节点,各捕捉节点采用低功耗模式,当节点采集数据低于预定阈值时,自动进入休眠模式,降低系统功耗;结合惯性导航和Kalman滤波算法对人体运动姿态进行实时的解算,以降低传统的算法存在的数据漂移问题;基于Wi-Fi模块,采用TCP-IP协议对姿态数据进行转发,实现对模型的实时驱动。选取多轴电机测试平台对算法的精度进行了评估,并对比了系统对真实人体的跟踪效果。实验结果表明,改进算法与传统的互补滤波算法相比具有更高的精度,基本能将角度漂移控制在1°以内;且算法的时延相对于互补滤波没有明显的滞后,基本能够实现对人体运动的准确跟踪。
针对目前句群划分工作缺乏计算语言学数据支持、忽略篇章衔接词的问题以及当前篇章分析较少研究句群语法单位的现象,提出一种汉语句群自动划分方法.该方法以汉语句群理论为指导,构建汉语句群划分标注评测语料,并且基于多元判别分析(MDA)方法设计了一组评价函数J,从而实现汉语句群的自动划分.实验结果表明,引入切分片段长度因素和篇章衔接词因素可以改善句群划分性能,并且利用Skip-Gram Model比传统的向量空间模型(VSM)有更好的效果,其正确分割率Pμ 达到85.37%、错误分割率WindowDiff降到24.08%.同时该方法在句群划分任务上有更大的优势,比传统MDA方法有更好的句群划分效果.
针对现有身份基在线/离线加密(IBOOE)机制仅满足较弱的选择安全模型,不允许攻击者适应性选择攻击目标的问题,将在线/离线密码技术引入到完全安全的身份基加密方案中,提出一种完全安全的身份基在线/离线加密方案。基于合数阶群上的3个静态假设,利用双系统加密技术证明该方案满足完全安全性。与知名的身份基在线/离线加密方案相比,所提方案不仅极大地提高了在线加密的效率,而且更能满足实际系统中对完全安全性的需求。