期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 级联融合与增强重建的多聚焦图像融合网络
杨本臣, 李浩然, 金海波
《计算机应用》唯一官方网站    2025, 45 (2): 594-600.   DOI: 10.11772/j.issn.1001-9081.2024030302
摘要73)   HTML1)    PDF (2477KB)(355)    收藏

针对数字图像拍摄过程中因远近视野聚焦不当所导致的半聚焦图像问题,提出一种级联融合与增强重建的多聚焦图像融合网络(CasNet)。首先,构建级联采样模块对不同深度采样特征图的残差进行计算与合并,从而高效利用不同尺度下的聚焦特征;其次,改进轻量化多头自注意力机制以计算特征图的维度残差,从而完成图像的特征增强,并使特征图在不同维度上呈现更优分布;再次,使用卷积通道注意力堆叠完成特征重建;最后,在采样过程中使用分隔卷积进行上下采样,从而保留更多的图像原有特征。实验结果表明,在多聚焦图像基准测试集Lytro、MFFW、grayscale和MFI-WHU上,CasNet相较于SESF-Fuse(Spatially Enhanced Spatial Frequency-based Fusion)和U2Fusion(Unified Unsupervised Fusion network)等热门方法在平均梯度(AG)、灰度级差(GLD)等指标上都取得了较好的结果。

图表 | 参考文献 | 相关文章 | 多维度评价
2. 基于门控卷积的时空交通流预测模型
徐丽, 符祥远, 李浩然
《计算机应用》唯一官方网站    2023, 43 (9): 2760-2765.   DOI: 10.11772/j.issn.1001-9081.2022081146
摘要414)   HTML27)    PDF (2271KB)(219)    收藏

针对现有的交通流预测模型未能精确捕获交通数据的时空特征,以及大部分模型都是在单步预测中体现出良好的预测性能,在多步预测中模型的预测性能显得并不理想的问题,提出了一种基于门控卷积的时空交通流预测模型(GC-STTFPM)。首先,利用图卷积网络(GCN)结合门控循环单元(GRU)来捕获交通流数据的时空特征;然后提出了一种利用卷积门控单元对原始数据和时空特征数据进行拼接与筛选处理的方法来对时空特征数据的有效性进行校验;最后,将GRU作为解码器来对未来交通流作出准确可靠的预测。在洛杉矶公路的交通数据集上的实验结果表明,GC-STTFPM在单步预测(5 min)中与基于注意力的时空图神经网络(ASTGNN)和扩散卷积递归神经网络(DCRNN)相比,平均绝对误差(MAE)分别降低了5.9%和9.9%,均方根误差(RMSE)分别降低了1.7%和5.8%。同时,GC-STTFPM在15、30、60 min三个多步尺度下的预测精度优于大多数现有基准模型,具有较强的适应性和鲁棒性。

图表 | 参考文献 | 相关文章 | 多维度评价
3. 基于上界单纯形投影图张量学习的多核聚类算法
雷皓云, 任珍文, 汪彦龙, 薛爽, 李浩然
《计算机应用》唯一官方网站    2021, 41 (12): 3468-3474.   DOI: 10.11772/j.issn.1001-9081.2021061393
摘要563)   HTML9)    PDF (6316KB)(151)    收藏

近年来,多核图聚类(MKGC)受到了广泛的关注,这得益于多核学习能有效地避免核函数与核参数的选择,而图聚类能充分挖掘样本间的复杂结构信息。然而现有的MKGC方法存在着如下问题:图学习技术使得模型复杂化,图拉普拉斯矩阵的高秩特性使其难以保证学到的关系图包含精确的c个连通分量(块对角性质),以及大部分方法忽略了候选关系图间的高阶结构信息,使得多核信息难以被充分利用。针对以上问题,提出了一种新的MKGC方法。首先,提出一种新的上界单纯形投影图学习方法,直接将核矩阵投影到图单纯形上,降低了计算复杂度;同时,引入一种新的块对角约束,使学到的关系图能保持精确的块对角属性;此外,在上界单纯形投影空间中引入低秩张量学习来充分挖掘多个候选关系图的高阶结构信息。在多个数据集上与现有的MKGC方法相比,所提出方法计算量小、稳定性高,在聚类精度(ACC)和标准互信息(NMI)指标上具有较大的优势。

图表 | 参考文献 | 相关文章 | 多维度评价