现有大气质量预测方法多基于单纯的时间序列数据进行趋势预测,忽略了污染物传输和扩散规律及其分类间模式特征的问题。为此,提出一种基于烛台图模式匹配(CPM)的PM2.5(大气细颗粒物污染)扩散特征提取方法。首先,利用基于卷积神经网络(CNN)的卷积思想从大量历史PM2.5序列中生成基础周期烛台图;然后,通过距离公式对不同烛台图特征向量的浓度模式进行聚类分析;最后,结合CNN在图像识别中的独特优势,形成融合图形特征与时序特征序列的混合模型,判断带有反转信号的烛台图将导致的趋势反转情况。在桂林市大气质量在线监测站的监测时序数据集上的实验结果表明,与使用单一时间序列数据的深度卷积神经网络VGG(Visual Geometry Group)相比,基于CPM的提取方法准确率提升了1.9个百分点。可见,基于CPM的方法能有效提取PM2.5趋势特征,可以用于预测未来污染物浓度周期变化。