期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 基于犹豫模糊集的凝聚式层次聚类算法
李文全, 毛伊敏, 彭新东
《计算机应用》唯一官方网站    2023, 43 (12): 3755-3763.   DOI: 10.11772/j.issn.1001-9081.2023010094
摘要278)   HTML7)    PDF (626KB)(103)    收藏

针对犹豫模糊聚类分析存在信息失真、属性权重客观性差、时间复杂度高的问题,提出一种基于犹豫模糊集的凝聚式层次聚类算法(AHCHF)。首先,采用犹豫模糊元的平均值扩充犹豫度小的数据对象;其次,利用原始信息熵和内部最大差异计算数据对象扩充前后的权重,并根据两个权重向量之间的最小鉴别信息确定属性的综合权重;最后,以加权距离和更小为目标,给出犹豫度恒定的中心点构造方法。在具体实例和人造数据集上进行的实验结果表明,相较于经典的犹豫模糊层次聚类算法(HFHC)和较新的模糊层次聚类算法(FHCA),AHCHF的轮廓系数(SC)均值分别提高了23.99%和9.28%,运行时间分别平均减少了27.18%和6.40%。以上结果验证了所提算法可以有效解决信息失真、属性权重客观性差的问题,并较好地提升聚类效果和聚类性能。

图表 | 参考文献 | 相关文章 | 多维度评价
2. 基于模糊谱聚类的不确定蛋白质相互作用网络功能模块挖掘
毛伊敏, 刘银萍, 梁田, 毛丁慧
计算机应用    2019, 39 (4): 1032-1040.   DOI: 10.11772/j.issn.1001-9081.2018091880
摘要440)      PDF (1499KB)(308)    收藏
针对谱聚类融合模糊 C-means(FCM)聚类的蛋白质相互作用(PPI)网络功能模块挖掘方法准确率不高、执行效率较低和易受假阳性影响的问题,提出一种基于模糊谱聚类的不确定PPI网络功能模块挖掘(FSC-FM)方法。首先,构建一个不确定PPI网络模型,使用边聚集系数给每一条蛋白质交互作用赋予一个存在概率测度,克服假阳性对实验结果的影响;第二,利用基于边聚集系数流行距离(FEC)策略改进谱聚类中的相似度计算,解决谱聚类算法对尺度参数敏感的问题,进而利用谱聚类算法对不确定PPI网络数据进行预处理,降低数据的维数,提高聚类的准确率;第三,设计基于密度的概率中心选取策略(DPCS)解决模糊 C-means算法对初始聚类中心和聚类数目敏感的问题,并对预处理后的PPI数据进行FCM聚类,提高聚类的执行效率以及灵敏度;最后,采用改进的边期望稠密度(EED)对挖掘出的蛋白质功能模块进行过滤。在酵母菌DIP数据集上运行各个算法可知,FSC-FM与基于不确定图模型的检测蛋白质复合物(DCU)算法相比,F-measure值提高了27.92%,执行效率提高了27.92%;与在动态蛋白质相互作用网络中识别复合物的方法(CDUN)、演化算法(EA)、医学基因或蛋白质预测算法(MGPPA)相比也有更高的F-measure值和执行效率。实验结果表明,在不确定PPI网络中,FSC-FM适合用于功能模块的挖掘。
参考文献 | 相关文章 | 多维度评价
3. 基于改进朴素贝叶斯的区间不确定性数据分类方法
李文进 熊小峰 毛伊敏
计算机应用    2014, 34 (11): 3268-3272.   DOI: 10.11772/j.issn.1001-9081.2014.11.3268
摘要155)      PDF (711KB)(584)    收藏

基于Parzen窗的朴素贝叶斯在区间不确定性数据分类中存在计算复杂度高、空间需求大的不足。针对该问题,提出一种改进的区间不确定性数据分类方法IU-PNBC。首先采用Parzen窗估计区间样本的类条件概率密度函数(CCPDF);然后通过代数插值得到类条件概率密度函数的近似函数;最后利用近似代数插值函数计算样本的后验概率, 并用于预测。通过人工生成的仿真数据和UCI标准数据集验证了算法假设的合理性以及插值点数对IU-PNBC算法分类精度的影响。实验结果表明,当插值点数大于15时,IU-PNBC算法的分类精度趋于稳定,且插值点数越多,算法分类精度越高;该算法可以避免原Parzen窗估计对训练样本的依赖, 并有效降低计算复杂度;同时由于该算法具有远低于基于Parzen窗的朴素贝叶斯的运行时间和空间需求, 因此适合解决数据量较大的区间不确定性数据分类问题。

参考文献 | 相关文章 | 多维度评价