期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 无线传感器网络精度优选RSSI协作定位算法
汪明, 许亮, 何小敏
计算机应用    2018, 38 (7): 1981-1988.   DOI: 10.11772/j.issn.1001-9081.2017123050
摘要443)      PDF (1237KB)(395)    收藏
针对目前无线传感器网络(WSN)定位算法中未知节点间接收信号强度指示(RSSI)冗余信息利用不足以及信息无筛选利用问题,提出一种新的精度优选RSSI协作定位算法。首先,利用RSSI阈值,从大量粗定位的未知节点中筛选出定位精度相对较高的节点;接着,利用subset子集判断方法从经过RSSI阈值筛选的节点中提取出受环境影响较小的节点,作为次选协作骨干节点;然后,使用锚节点置换准则,根据置换锚节点的定位误差,从次选协作节点中进一步提取出高精度的节点作为优选协作骨干节点;最后,以协作骨干节点为协作对象,根据精度优先级参与协作求精,对未知节点进行未知修正。仿真实验表明,该算法在100 m×100 m网格区域内的平均定位精度小于1.127 m。在定位精度方面,相同条件下,相较于改进的采用RSSI模型的无线传感器网络定位算法,该算法平均定位精度提高了15%;在时间效率方面,相同条件下,对比传统RSSI协作定位算法,该算法在时间效率上提高了20%。可见,所提算法可以有效提高节点定位精度,减小计算复杂度,提高时间效率。
参考文献 | 相关文章 | 多维度评价
2. 神经模糊控制在船舶自动舵中的应用
汪明慧 余永权 曾碧
计算机应用    2010, 30 (8): 2260-2264.  
摘要282)      PDF (625KB)(1229)    收藏
针对常规模糊自动舵由于受船舶控制过程的非线性、时变性以及风浪干扰等因素影响,模糊控制规则和隶属函数需要校正,利用神经网络的自学习能力,用神经网络去实现模糊控制,设计自动舵神经模糊控制器,采用BP算法和最小二乘算法的混合学习算法实现对模糊规则和隶属函数的参数训练,提高控制器的自适应能力。仿真实验表明所设计的控制器有效可行,适应船舶在风浪干扰环境下的控制性能要求。
相关文章 | 多维度评价