Toggle navigation
首页
期刊介绍
期刊简介
历史沿革
收录情况
获奖情况
引用指标
编委会
期刊在线
文章推荐
过刊浏览
专辑专刊
下载排行
阅读排行
投稿指南
组稿方向
投稿须知
论文模板
常见问题
署名变更申请
单位变更申请
版权转让协议
中图分类号
引言书写要求
参考文献著录格式
插图与表格规范
英文摘要书写要求
收费标准
学术诚信
联系我们
编辑部联系方式
位置示意图
期刊订阅办法
广告合作
English
期刊
出版年
关键词
结果中检索
(((王丽娟[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
基于近邻图改进的块对角子空间聚类算法
王丽娟, 陈少敏, 尹明, 许跃颖, 郝志峰, 蔡瑞初, 温雯
计算机应用 2021, 41 (
1
): 36-42. DOI:
10.11772/j.issn.1001-9081.2020061005
摘要
(
412
)
PDF
(1491KB)(
696
)
可视化
收藏
块对角表示(BDR)模型可以通过利用线性表示对数据有效地进行聚类,却无法很好地利用高维数据常见的非线性流形结构信息。针对这一问题,提出了基于近邻图改进的块对角子空间聚类(BDRNG)算法来通过近邻图来线性拟合高维数据的局部几何结构,并通过块对角约束来生成具有全局信息的块对角结构。BDRNG同时学习全局信息以及局部数据结构,从而获得更好的聚类表现。由于模型包含近邻图算子和非凸的块对角表示范数,BDRNG 采用了交替最小化来优化求解算法。实验结果如下:在噪声数据集上,BDRNG能够生成稳定的块对角结构系数矩阵,这说明了BDRNG对于噪声数据具有鲁棒性;在标准数据集上,BDRNG的聚类表现均优于BDR,尤其在人脸数据集上,相较于BDR,BDRNG的聚类准确度提高了8%。
参考文献
|
相关文章
|
多维度评价
Select
2.
基于图编码网络的社交网络节点分类方法
郝志峰, 柯妍蓉, 李烁, 蔡瑞初, 温雯, 王丽娟
计算机应用 2020, 40 (
1
): 188-195. DOI:
10.11772/j.issn.1001-9081.2019061116
摘要
(
928
)
PDF
(1280KB)(
588
)
可视化
收藏
针对如何融合节点自身属性以及网络结构信息实现社交网络节点分类的问题,提出了一种基于图编码网络的社交网络节点分类算法。首先,每个节点向邻域节点传播其携带的信息;其次,每个节点通过神经网络挖掘其与邻域节点之间可能隐含的关系,并且将这些关系进行融合;最后,每个节点根据自身信息以及与邻域节点关系的信息提取更高层次的特征,作为节点的表示,并且根据该表示对节点进行分类。在微博数据集上,与经典的深度随机游走模型、逻辑回归算法有以及最近提出的图卷积网络算法相比,所提算法分类准确率均有大于8%的提升;在DBLP数据集上,与多层感知器相比分类准确率提升4.83%,与图卷积网络相比分类准确率提升0.91%。
参考文献
|
相关文章
|
多维度评价
Select
3.
验证和识别相融合的深度行人识别网络
蔡晓东, 杨超, 王丽娟, 甘凯今
计算机应用 2016, 36 (
9
): 2550-2554. DOI:
10.11772/j.issn.1001-9081.2016.09.2550
摘要
(
455
)
PDF
(777KB)(
350
)
可视化
收藏
找到能减小类内距离、增大类间距离的特征表示方法是行人识别的一个挑战。提出一种基于行人验证和识别相融合的深度网络模型来解决这一问题。首先,识别监督学习网络模型增加不同个人的类间间距,验证监督学习网络模型减少同一个行人的类内间距;然后,将行人验证和识别的深度网络融合,提取到更有分辨能力的行人特征向量;最后,采用了联合贝叶斯的行人比对方法,通过监督学习排名的方式,提高行人比对的准确率。实验结果表明,所提方法在VIPeR库上同其他深度网络相比有较高的识别准确率,融合网络与单独的识别和验证网络相比有更高的收敛速度和识别准确率。
参考文献
|
相关文章
|
多维度评价
Select
4.
基于典型因果推断算法的无线网络性能优化
郝志峰, 陈薇, 蔡瑞初, 黄瑞慧, 温雯, 王丽娟
计算机应用 2016, 36 (
8
): 2114-2120. DOI:
10.11772/j.issn.1001-9081.2016.08.2114
摘要
(
696
)
PDF
(1089KB)(
696
)
可视化
收藏
现有的无线网络性能优化方法主要基于指标间的相关关系分析,无法有效指导网络优化等干预行为。为此,提出典型因果推断(CCI)算法,并将其应用于无线网络性能优化。首先,针对无线网络性能由大量相关指标体现这一特性,采用典型相关分析(CCA)方法,提取指标中蕴含的原子事件;然后再采用因果推断方法,构建原子事件间的因果关系网络。通过上述两个阶段反复迭代,确定原子事件间的因果关系网络,为无线网络性能优化提出一个较为可靠和有效的依据。最后通过模拟实验验证了CCI算法的有效性,在某城市3万多个移动基站数据上发现了一批有意义的无线网络指标间的因果关系。
参考文献
|
相关文章
|
多维度评价
Select
5.
基于多类别语义词簇的新闻读者情绪分类
温雯, 吴彪, 蔡瑞初, 郝志峰, 王丽娟
计算机应用 2016, 36 (
8
): 2076-2081. DOI:
10.11772/j.issn.1001-9081.2016.08.2076
摘要
(
683
)
PDF
(966KB)(
584
)
可视化
收藏
分析和研究文本读者情绪有助于发现互联网的负面信息,是舆情监控的重要组成部分。考虑到引起读者不同情绪主要因素在于文本的语义内容,如何抽取文本语义特征因此成为一个重要问题。针对这一问题,提出首先使用word2vec模型对文本进行初始的语义表达;在此基础上结合各个情绪类别分别构建有代表性的语义词簇,进而采用一定准则筛选对类别判断有效的词簇,从而将传统的文本词向量表达改进为语义词簇上的向量表达;最后使用多标签分类方法进行情绪标签的学习和分类。实验结果表明,该方法相对于现有的代表性方法来说能够获得更好的精度和稳定性。
参考文献
|
相关文章
|
多维度评价
Select
6.
基于随机取样的选择性K-means聚类融合算法
王丽娟 郝志峰 蔡瑞初 温雯
计算机应用 2013, 33 (
07
): 1969-1972. DOI:
10.11772/j.issn.1001-9081.2013.07.1969
摘要
(
1011
)
PDF
(655KB)(
552
)
可视化
收藏
由于缺少数据分布、参数和数据类别标记的先验信息,部分基聚类的正确性无法保证,进而影响聚类融合的性能;而且不同基聚类决策对于聚类融合的贡献程度不同,同等对待基聚类决策,将影响聚类融合结果的提升。为解决此问题,提出了基于随机取样的选择性K-means聚类融合算法(RS-KMCE)。该算法中的随机取样策略可以避免基聚类决策选取陷入局部极小,而且依据多样性和正确性定义的综合评价值,有利于算法快速收敛到较优的基聚类子集,提升融合性能。通过2个仿真数据库和4个UCI数据库的实验结果显示:RS-KMCE的聚类性能优于K-means算法、K-means融合算法(KMCE)以及基于Bagging的选择性K-means聚类融合(BA-KMCE)。
参考文献
|
相关文章
|
多维度评价