期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 基于改进实时检测Transformer的塔机上俯视场景小目标检测模型
庞玉东, 李志星, 刘伟杰, 李天昊, 王宁宁
《计算机应用》唯一官方网站    2024, 44 (12): 3922-3929.   DOI: 10.11772/j.issn.1001-9081.2023121796
摘要333)   HTML10)    PDF (3128KB)(258)    收藏

针对塔机吊钩相互碰撞导致物体跌落以及塔机倒塌致使人员伤亡等一系列施工现场人员安全保障的问题,提出一种基于改进实时检测Transformer (Real-Time DEtection TRansformer, RT-DETR)的塔机上俯视场景小目标检测模型。首先,在原始模型中加入应用模型的重参数化思想设计的多路训练和单路推理结构以提升检测速度;其次,重新设计FasterNet Block中的卷积模块替换原始BackBone之中的BasicBlock以提升检测模型性能;再次,利用新的损失函数Inner-SIoU(Inner-Structured Intersection over Union)进一步提升模型精度与收敛速度;最后,进行消融实验与对比实验验证模型性能。结果表明,在检测塔机顶部俯视小目标图像时,所提模型的精度达到94.7%,高于原始RT-DETR模型6.1个百分点;所提模型的每秒检测帧数(FPS)达到59.7,检测速度相较于原模型提升了21%。在公共数据集COCO 2017上所提模型的平均精度(AP)比YOLOv5、YOLOv7和YOLOv8分别高2.4、1.5和1.3个百分点。可见所提模型满足塔机上俯视场景下的小目标检测精度和速度的要求。

图表 | 参考文献 | 相关文章 | 多维度评价
2. 融合标签与人工蜂群的微博推荐算法
王宁宁, 鲁燃, 王智昊
计算机应用    2016, 36 (10): 2789-2793.   DOI: 10.11772/j.issn.1001-9081.2016.10.2789
摘要417)      PDF (781KB)(486)    收藏
针对基于标签的推荐算法中存在的冷启动问题,提出了一种融合标签与人工蜂群的微博推荐算法——TABC-R。首先,对用户的标签信息进行定义,并使用标签集表示用户兴趣;其次,根据标签权重、标签属性权重和标签与微博中词语的相似度三种变量来构造人工蜂群算法中的适应度函数;最后,利用人工蜂群算法的搜索策略,搜索出具有最优适应度值的微博向用户进行推荐。与基于标签的推荐(T-R)算法和基于人工蜂群的推荐算法(ABC-R)相比,TABC-R算法的准确率和召回率均有小幅提升,表明了TABC-R算法的有效性。
参考文献 | 相关文章 | 多维度评价