期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 基于注意力与图卷积网络的关系抽取模型
王晓霞, 钱雪忠, 宋威
计算机应用    2021, 41 (2): 350-356.   DOI: 10.11772/j.issn.1001-9081.2020081310
摘要504)      PDF (995KB)(1824)    收藏
针对关系抽取任务中句子依存树的信息利用率低和特征提取效果不佳的问题,提出了一种基于注意力引导的门控感知图卷积网络(Att-Gate-GCN)模型。首先,利用一种基于注意力机制的软剪枝策略,通过注意力机制为依存树中的边分配权重,以挖掘依存树中的有效信息,同时过滤无用信息;其次,构建一种门控感知图卷积网络(GCN)结构,通过门控机制增加特征感知能力,以获取更鲁棒的关系特征,同时结合依存树中的局部与非局部依赖特征,进一步抽取关键信息;最后,将关键信息输入分类器得到关系类别标签。实验结果表明,相较于原始的图卷积网络关系抽取模型,所提模型在SemEval2010-Task8数据集和KBP37数据集上F1值分别有2.2个百分点和3.8个百分点的提升,能够更充分地利用有效信息,提升了模型的关系抽取能力。
参考文献 | 相关文章 | 多维度评价
2. 融合语法规则的双通道中文情感模型分析
邱宁佳, 王晓霞, 王鹏, 王艳春
计算机应用    2021, 41 (2): 318-323.   DOI: 10.11772/j.issn.1001-9081.2020050723
摘要515)      PDF (1093KB)(1209)    收藏
针对使用中文文本进行情感分析时,忽略语法规会降低分类准确率的问题,提出一种融合语法规则的双通道中文情感分类模型CB_Rule。首先设计语法规则提取出情感倾向更加明确的信息,再利用卷积神经网络(CNN)的局部感知特点提取出语义特征;然后考虑到规则处理时可能忽略上下文的问题,使用双向长短时记忆(Bi-LSTM)网络提取包含上下文信息的全局特征,并对局部特征进行融合补充,从而完善CNN模型的情感特征倾向信息;最后将完善后的特征输入到分类器中进行情感倾向判定,完成中文情感模型的构建。在中文电商评论文本数据集上将所提模型与融合语法规则的Bi-LSTM中文情感分类方法R-Bi-LSTM以及融合句法规则和CNN的旅游评论情感分析模型SCNN进行对比,实验结果表明,所提模型在准确率上分别提高了3.7个百分点和0.6个百分点,说明CB_Rule模型具有很好的分类效果。
参考文献 | 相关文章 | 多维度评价