Toggle navigation
首页
期刊介绍
期刊简介
历史沿革
收录情况
获奖情况
引用指标
编委会
期刊在线
文章推荐
过刊浏览
专辑专刊
下载排行
阅读排行
投稿指南
组稿方向
投稿须知
论文模板
常见问题
署名变更申请
单位变更申请
版权转让协议
中图分类号
引言书写要求
参考文献著录格式
插图与表格规范
英文摘要书写要求
收费标准
学术诚信
联系我们
编辑部联系方式
位置示意图
期刊订阅办法
广告合作
English
期刊
出版年
关键词
结果中检索
(((王智昊[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
基于人工萤火虫局部决策域的改进生物地理学优化算法
王智昊, 刘培玉, DING Ding
计算机应用 2017, 37 (
5
): 1363-1368. DOI:
10.11772/j.issn.1001-9081.2017.05.1363
摘要
(
613
)
PDF
(917KB)(
513
)
可视化
收藏
针对生物地理学优化(BBO)算法搜索能力不足的缺点,提出基于萤火虫算法局部决策域策略的改进迁移操作来提算法的全局寻优能力。改进的迁移操作能够在考虑不同栖息地各自的迁入率与迁出率的基础上,进一步利用栖息地之间的相互影响关系。将改进算法应用于12个典型的函数优化问题来测试改进生物地理学优化算法的性能,验证了改进算法的有效性。与BBO、改进BBO(IBBO)、基于差分进化的BBO(DE/BBO)算法的实验结果表明,改进算法提高了算法的全局搜索能力、收敛速度和解的精度。
参考文献
|
相关文章
|
多维度评价
Select
2.
融合标签与人工蜂群的微博推荐算法
王宁宁, 鲁燃, 王智昊
计算机应用 2016, 36 (
10
): 2789-2793. DOI:
10.11772/j.issn.1001-9081.2016.10.2789
摘要
(
417
)
PDF
(781KB)(
486
)
可视化
收藏
针对基于标签的推荐算法中存在的冷启动问题,提出了一种融合标签与人工蜂群的微博推荐算法——TABC-R。首先,对用户的标签信息进行定义,并使用标签集表示用户兴趣;其次,根据标签权重、标签属性权重和标签与微博中词语的相似度三种变量来构造人工蜂群算法中的适应度函数;最后,利用人工蜂群算法的搜索策略,搜索出具有最优适应度值的微博向用户进行推荐。与基于标签的推荐(T-R)算法和基于人工蜂群的推荐算法(ABC-R)相比,TABC-R算法的准确率和召回率均有小幅提升,表明了TABC-R算法的有效性。
参考文献
|
相关文章
|
多维度评价