提出一种合并分枝的模糊决策树文本分类方法对相似文本类进行分类,并可抽取出分类精度较高的模糊分类规则。首先研究改进了的χ2统计量,并根据改进的χ2统计量对文本的特征词条进行聚合,有效地降低了文本向量空间的维数。然后使用一种合并分枝的模糊决策树进行分类,大大减少了抽取的规则数量。从而既保证了决策树分类的精度和速度,又可抽取出可理解的模糊分类规则。
采用模式聚类和遗传算法进行文本特征提取,并用Kohonen网络进行分类。模式聚类可以有效降低文本特征的维数,使得特征从几千维降为几百维。但几百维的维数对Kohonen网络来说仍然太高,因此采用遗传算法在此基础上继续降维。实验结果表明,这两种方法结合可以极大地降低文本的维数,并能提高分类准确率。