针对食谱推荐任务中信息维度不全面、交互数据稀疏和交互信息冗余的问题,提出一种基于风味嵌入异构图层次学习的食谱推荐模型(RecipeFlavor)。首先,引入风味分子维度,并基于用户、食物、食材和食材的风味物质构建异构图,有效表示4种节点之间的联系;其次,基于信息传递机制构建基于异构图的层级学习模块,并结合压缩注意力(SA)机制,将节点的不同关系视为不同的信息通道,提取节点之间的关键交互信息并抑制噪声;最后,基于特征感知噪声构建对比学习(CL)模块,在模型学习中引入正负样本区分任务,增强用户和食谱节点之间的信息关联,提升模型对特征的学习能力。实验结果表明,RecipeFlavor在Recipe 1M+大型数据集上,与HGAT(Hierarchical Graph ATtention network for recipe recommendation)模型相比,曲线下面积(AUC)提升了1.44个百分点,Top-10的模型精确度(Pre)、命中率(HR)、平均精度(MAP)和归一化折损累计增益(NDCG)分别提升了0.76、6.11、2.68和3.05个百分点。可见,风味分子信息的引入拓展了食谱推荐的学习维度,而RecipeFlavor能有效提取异构图中的关键信息,增强用户和食谱之间的关联性,从而提升食谱推荐的精度。
产业链风险评估预警是有效保护产业链上下游公司利益和减轻公司风险的重要措施。然而,现有方法由于忽视了产业链上下游公司之间的传播效应和公司信息的不透明性,无法准确评估公司风险,且忽略了动态财务数据对产业链的影响,无法提前感知风险,进行风险预警。针对以上问题,提出一种结合层次图(HG)神经网络与长短期记忆(LSTM)的产业链风险评估预警模型(HiGNN)。首先,利用产业链上下游关系和投融资关系构建“产业链-投资”HG;其次,利用财务特征提取模块提取公司多季度财务数据的特征;再次,利用投资特征提取模块提取投资关系图特征;最后,利用注意力机制融合财务特征和投资特征,通过图表示学习方法对公司节点进行风险分类。在真实的集成电路制造业数据集上的实验结果表明,与图注意力网络(GAT)模型、循环神经网络(RNN)模型相比,当训练比率为60%时,所提模型的准确率分别提升了14.87%、22.10%,F1值提升了12.63%、16.67%。所提模型能够有效捕捉产业链中的传染效应,提高风险识别能力,优于传统的机器学习方法和图神经网络方法。
虚假招聘广告的泛滥不仅会损害求职者的合法权益,还会扰乱正常的就业秩序,造成求职者极差的用户体验。为了有效检测出虚假招聘广告,提出一种基于一致性训练的半监督虚假招聘广告检测模型(SSC)。首先,对所有数据应用一致性正则项提升模型的性能;然后,通过联合训练的方式整合有监督损失和无监督损失得到半监督损失;最后,使用半监督损失对模型进行优化。在两个真实数据集EMSCAD (EMployment SCam Aegean Dataset)和IMDB (Internet Movie DataBase)上的实验结果表明,SSC在标签数据仅为20时取得了最好的检测效果,准确率与现有先进的半监督学习模型UDA (Unsupervised Data Augmentation)相比提升了2.2和2.8个百分点,与深度学习模型BERT (Bidirectional Encoder Representations from Transformers)相比提升了3.4和11.7个百分点,同时还具有较好的可拓展性。
针对基于参考向量的高维多目标进化算法中随机选择父代个体会降低算法的收敛速度,以及部分参考向量分配个体的缺失会减弱种群多样性的问题,提出了一种基于分解的高维多目标改进优化算法(IMaOEA/D)。首先,在分解策略框架下,当一个参考向量至少分配了2个个体时,对该参考向量分配的个体根据其到理想点的距离选择父代个体来繁殖子代,从而提高搜索速度。然后,针对未能分配到至少2个个体的参考向量,则从所有个体中选择沿该参考向量和理想点距离最小的点,使得该参考向量至少有2个个体与其相关。同时,确保环境选择后每个参考向量有一个个体与其相关,从而保证种群的多样性。在10个和15个目标的MaF测试问题集上将所提算法与其他4个基于分解的高维多目标优化算法进行了测试对比,实验结果表明所提算法对于高维多目标优化问题具有较好的寻优能力,且该算法在30个测试问题中的14个测试问题上得到的优化结果均优于其他4个对比算法,特别是对于退化问题具有一定的寻优优势。
针对存储原因所导致的区块链技术难以在大型业务场景应用的问题,提出了一种基于门限秘密共享的区块链分片存储模型。首先由共识节点使用改进的Shamir门限,将要上链的交易数据进行分片处理;其次,共识节点基于分片数据构造不同的区块,并分发给现存于区块链网络中的其他节点进行存储;最后,当节点要读取交易数据时,在从分发到交易数据分片的n个节点中的k个节点请求数据,并利用拉格朗日插值算法进行交易数据的恢复。实验结果表明,该模型在保证了上链数据安全性、可靠性、隐私性的同时,每个节点的数据存储量约为传统存储方法的1/(k-1),从而有利于区块链技术在大型业务场景的应用。
针对测试用例自动化生成技术中效率较低的问题,尝试引入新的细菌觅食算法,并结合测试用例生成问题提出了一种基于细菌觅食算法的改进算法(IM-BFOA)。IM-BFOA首先采用Kent映射来增加细菌的初始种群和全局搜索的多样性,其次针对算法中趋化阶段的步长进行自适应设计,使其在细菌趋化过程中更加合理化,并通过实验仿真验证其合理性,最后根据被测程序构造适应度函数来加速测试数据的优化。实验结果表明,与遗传算法(GA)、粒子群优化(PSO)算法和标准细菌觅食优化算法(BFOA)相比,该算法在保证覆盖率的前提下,在迭代次数和运行时间方面都是较优的,可有效提高生成测试用例的效率。
针对高铁大规模多输入多输出(MIMO)系统的吞吐量未被充分提升的问题,提出一种基于天线分组的自适应波束传输方案。首先利用基站(BS)预知的列车位置信息,并将波束赋形技术引入高速场景,建立高铁大规模MIMO的三维模型;其次验证BS天线分组情况下,子波束的吞吐量与其对应的发射天线数满足非线性关系,且子波束天线数变化并未对其他波束的吞吐量产生影响。基于此,以天线分组的自适应波束赋形方案对列车运行至不同位置的波束数和子波束所需的发射天线数进行调整,保证不同位置的最优系统吞吐量。计算机仿真表明,该方案与传统的单波束、双波束、八波束相比,在列车距基站125 m范围内分别实现了系统吞吐量87.9%、62.3%、50.6%的提升,在125 m之外与单波束赋形的系统吞吐量相近。实验结果表明,所提方案无论列车距BS较近或较远时,系统吞吐量均处于最佳水平,更好地适应高速铁路环境。
针对IEEE 802.15.4时隙载波侦听多址接入与碰撞避免(CSMA/CA)算法,利用二维Markov链分析方法提出了一个网络分析模型。该模型特别考虑了IEEE 802.15.4协议的休眠模式以及退避窗口先于退避阶数(NB)达到最大值的情况。在此基础上,结合M/G/1/K排队理论推导得到了吞吐量的表达式,进而分析了网络在非饱和状态下数据包到达率对吞吐量的影响,利用模拟平台NS2进行了仿真。实验结果显示理论分析结果与仿真结果可以较好地拟合,并能准确描述网络吞吐量的变化,验证了分析模型的有效性。