期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. Wi-Fi7多链路通感一体化的功率和信道联合智能分配算法
王靖, 方旭明
《计算机应用》唯一官方网站    2025, 45 (2): 563-570.   DOI: 10.11772/j.issn.1001-9081.2024020191
摘要85)   HTML0)    PDF (2623KB)(800)    收藏

针对下一代Wi-Fi7设备中多链路传输时通信与感知一体化的功率和信道联合资源分配的问题,根据多链路设备(MLD)特殊的上下两层媒体接入控制层(MAC)结构,提出一种基于QMIX的联合功率控制与信道分配的多链路多智能体强化学习算法(JPCQMIX)。该算法将MLD的每个下层MAC即每条链路作为一个智能体,并在上层MAC中设置混合网络用来处理所有下层MAC的局部值函数,以达到中心式训练的效果。训练完成后,每个下层MAC进入分布式执行模式,并独立地与它的局部环境进行交互,以进行功率控制和信道分配决策。仿真结果表明,相较于多智能体深度Q网络(MADQN)算法和传统启发式粒子群优化(PSO)算法,所提算法在通信吞吐量性能上分别提高了20.51%和29.10%;同时,所提算法在面对不同感知精度阈值和不同链路最低信干噪比(SINR)时,鲁棒性更好。可见,JPCQMIX能有效提升系统在满足感知精度条件下的通信吞吐量。

图表 | 参考文献 | 相关文章 | 多维度评价
2. 融合注意力和裁剪机制的通用文本分类模型
崔雨萌, 王靖亚, 刘晓文, 闫尚义, 陶知众
《计算机应用》唯一官方网站    2023, 43 (8): 2396-2405.   DOI: 10.11772/j.issn.1001-9081.2022071071
摘要372)   HTML25)    PDF (1774KB)(167)    收藏

针对当前分类模型通常仅对一种长度文本有效,而在实际场景中长短文本大量混合存在的问题,提出了一种基于混合神经网络的通用型长短文本分类模型(GLSTCM-HNN)。首先,利用BERT(Bidirectional Encoder Representations from Transformers)对文本进行动态编码;然后,使用卷积操作提取局部语义信息,并构建双通道注意力机制(DCATT)对关键文本区域增强;同时,使用循环神经网络(RNN)捕获全局语义信息,并建立长文本裁剪机制(LTCM)来筛选重要文本;最后,将提取到的局部和全局特征进行融合降维,并输入到Softmax函数里以得到类别输出。在4个公开数据集上的对比实验中,与基线模型(BERT-TextCNN)和性能最优的对比模型(BERT)相比,GLSTCM-HNN的F1分数至多分别提升了3.87和5.86个百分点;在混合文本上的两组通用性实验中,GLSTCM-HNN的F1分数较已有研究提出的通用型模型——基于Attention的改进CNN-BiLSTM/BiGRU混联文本分类模型(CBLGA)分别提升了6.63和37.22个百分点。实验结果表明,所提模型能够有效提高文本分类任务的准确性,并具有在与训练数据长度不同的文本上以及在长短混合文本上分类的通用性。

图表 | 参考文献 | 相关文章 | 多维度评价
3. 基于填充和相似性信任因子的协同过滤推荐算法
郝立燕 王靖
计算机应用    2013, 33 (03): 834-837.   DOI: 10.3724/SP.J.1087.2013.00834
摘要747)      PDF (666KB)(627)    收藏
为了提高推荐系统在数据稀疏情况下的推荐质量,提出一种改进的协同过滤算法。该方法使用一种数据挖掘算法对稀疏评分矩阵进行填充; 在完整的填充矩阵上计算用户相似性,并引入相似性信任因子; 最终做出推荐预测。典型数据集上的对比实验结果表明,即使在评分数据极为稀疏的情况下,该算法仍能取得较好的结果。
参考文献 | 相关文章 | 多维度评价
4. 基于类别信息的监督局部保持投影方法
李晓曼 王靖
计算机应用    2012, 32 (02): 531-534.   DOI: 10.3724/SP.J.1087.2012.00531
摘要1126)      PDF (649KB)(477)    收藏
局部保持投影算法(LPP)是拉普拉斯映射(LE)的线性近似,但LPP作为一种无监督方法,并没有有效利用已有的类别信息提高分类效率。为此提出一种基于类别信息的监督局部保持投影方法(SLPP-LI)。在学习投影矩阵时,SLPP-LI综合利用了流形的几何结构和已有训练点的类别信息,通过调整控制参数的取值,有效地利用已知的低维信息,并且直接求解线性方程获得高维数据的低维模型。通过在多个人脸数据库和手写数字库上的对比实验,表明了SLPP-LI对于高维数据的初始维数以及训练数据的数目并不敏感,〖BP(〗同类问题中与相应的对比算法相比〖BP)〗与主分量分析法(PCA)、LPP、正交LPP(OLPP)、有监督的LPP(SLPP)相比,均具有较高的识别率,充分说明SLPP-LI算法能够有效处理分类问题。
相关文章 | 多维度评价