期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 基于模块度和标签传递的推荐算法
盛俊, 李斌, 陈崚
计算机应用    2020, 40 (9): 2606-2612.   DOI: 10.11772/j.issn.1001-9081.2020010095
摘要502)      PDF (1025KB)(453)    收藏
针对基于网络信息的商品推荐的问题,提出了在二部网络上基于社区挖掘和标签传递的推荐算法。首先,用带权的二部图来表达用户-项目的评分矩阵,利用标签传递技术对二部网络进行社区挖掘;然后,基于二部网络中的社区结构信息,充分利用用户所在的社区之间的相似性以及项目之间、用户之间的相似性来挖掘用户可能感兴趣的项目;最后,向用户进行项目的推荐。在实际网络上的实验结果表明,与基于双向关联规则项目评分预测的推荐算法(BAR-CF)、基于项目评分预测的推荐算法(IR-CF)、基于网络链接预测的用户偏好预测方法(PLP)和改进的基于用户的协同过滤的方法(MU-CF)相比,该算法的平均绝对差(MAE)低0.1~0.3,准确率高0.2。因此,所提算法可以取得比其他类似方法更高质量的推荐结果。
参考文献 | 相关文章 | 多维度评价
2. 基于隐空间映射的带符号网络上的顶点分类
盛俊, 顾沈胜, 陈崚
计算机应用    2019, 39 (5): 1411-1415.   DOI: 10.11772/j.issn.1001-9081.2018112559
摘要477)      PDF (832KB)(502)    收藏
社会网络顶点分类在解决实际问题中有广泛的应用,但绝大多数现有的网络顶点分类算法都集中在无符号的网络,而在边上具有符号的社交网络上的顶点分类算法却很少,且负链接对于符号网络分析的作用大于正链接。研究了符号网络中顶点的分类问题。首先将正、负网络映射到相对应的隐空间,提出基于隐空间的正负链接的数学模型;然后提出优化该模型的迭代算法,通过对隐空间矩阵和映射矩阵的迭代优化,来对网络中的顶点进行分类。由带符号的社会网络数据集的实验结果证明,该算法在数据集Epinions上得到结果的F1值在11以上,在数据集Slashdo上得到结果的F1值在23.8以上,与随机算法相比具有较高的精确度。
参考文献 | 相关文章 | 多维度评价