Toggle navigation
首页
期刊介绍
期刊简介
历史沿革
收录情况
获奖情况
引用指标
编委会
期刊在线
文章推荐
过刊浏览
专辑专刊
下载排行
阅读排行
投稿指南
组稿方向
投稿须知
论文模板
常见问题
署名变更申请
单位变更申请
版权转让协议
中图分类号
引言书写要求
参考文献著录格式
插图与表格规范
英文摘要书写要求
收费标准
学术诚信
联系我们
编辑部联系方式
位置示意图
期刊订阅办法
广告合作
English
期刊
出版年
关键词
结果中检索
(((盛俊[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
基于模块度和标签传递的推荐算法
盛俊, 李斌, 陈崚
计算机应用 2020, 40 (
9
): 2606-2612. DOI:
10.11772/j.issn.1001-9081.2020010095
摘要
(
502
)
PDF
(1025KB)(
453
)
可视化
收藏
针对基于网络信息的商品推荐的问题,提出了在二部网络上基于社区挖掘和标签传递的推荐算法。首先,用带权的二部图来表达用户-项目的评分矩阵,利用标签传递技术对二部网络进行社区挖掘;然后,基于二部网络中的社区结构信息,充分利用用户所在的社区之间的相似性以及项目之间、用户之间的相似性来挖掘用户可能感兴趣的项目;最后,向用户进行项目的推荐。在实际网络上的实验结果表明,与基于双向关联规则项目评分预测的推荐算法(BAR-CF)、基于项目评分预测的推荐算法(IR-CF)、基于网络链接预测的用户偏好预测方法(PLP)和改进的基于用户的协同过滤的方法(MU-CF)相比,该算法的平均绝对差(MAE)低0.1~0.3,准确率高0.2。因此,所提算法可以取得比其他类似方法更高质量的推荐结果。
参考文献
|
相关文章
|
多维度评价
Select
2.
基于隐空间映射的带符号网络上的顶点分类
盛俊, 顾沈胜, 陈崚
计算机应用 2019, 39 (
5
): 1411-1415. DOI:
10.11772/j.issn.1001-9081.2018112559
摘要
(
477
)
PDF
(832KB)(
502
)
可视化
收藏
社会网络顶点分类在解决实际问题中有广泛的应用,但绝大多数现有的网络顶点分类算法都集中在无符号的网络,而在边上具有符号的社交网络上的顶点分类算法却很少,且负链接对于符号网络分析的作用大于正链接。研究了符号网络中顶点的分类问题。首先将正、负网络映射到相对应的隐空间,提出基于隐空间的正负链接的数学模型;然后提出优化该模型的迭代算法,通过对隐空间矩阵和映射矩阵的迭代优化,来对网络中的顶点进行分类。由带符号的社会网络数据集的实验结果证明,该算法在数据集Epinions上得到结果的F1值在11以上,在数据集Slashdo上得到结果的F1值在23.8以上,与随机算法相比具有较高的精确度。
参考文献
|
相关文章
|
多维度评价