Toggle navigation
首页
期刊介绍
期刊简介
历史沿革
收录情况
获奖情况
引用指标
编委会
期刊在线
文章推荐
过刊浏览
专辑专刊
下载排行
阅读排行
投稿指南
组稿方向
投稿须知
论文模板
常见问题
署名变更申请
单位变更申请
版权转让协议
中图分类号
引言书写要求
参考文献著录格式
插图与表格规范
英文摘要书写要求
收费标准
学术诚信
联系我们
编辑部联系方式
位置示意图
期刊订阅办法
广告合作
English
期刊
出版年
关键词
结果中检索
(((章军[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
基于轻量级网络的钢铁表面缺陷分类
史杨潇, 章军, 陈鹏, 王兵
计算机应用 2021, 41 (
6
): 1836-1841. DOI:
10.11772/j.issn.1001-9081.2020081244
摘要
(
539
)
PDF
(981KB)(
474
)
可视化
收藏
缺陷分类是钢铁表面缺陷检测的重要内容。在卷积神经网络(CNN)取得良好效果的同时,网络日益增长的参数量耗费了大量计算成本,为缺陷分类任务在个人计算机或低算力设备上的部署带来了巨大的挑战。针对上述问题,提出了一种新颖的轻量级网络模型Mix-Fusion。首先,通过组卷积和通道洗牌两种操作,在保持精度的同时有效降低计算成本;其次,利用一个狭窄的特征映射对组间信息进行融合编码,并将生成的特征与原始网络结合,从而有效解决了“稀疏连接”卷积阻碍组间信息交换的问题;最后,用一种新型的混合卷积(MixConv)替代了传统的深度卷积(DWConv),以进一步提高模型的性能。在NEU-CLS数据集上的实验结果表明,Mix-Fusion网络在缺陷分类任务中的浮点运算次数和分类准确率分别为43.4 MFLOPs和98.61%。相较于ShuffleNetV2和MobileNetV2网络,Mix-Fusion网络不仅降低了模型参数,压缩了模型大小,同时还得到了更好的分类精度。
参考文献
|
相关文章
|
多维度评价
Select
2.
基于焦点损失的半监督高光谱图像分类
张凯琳, 阎庆, 夏懿, 章军, 丁云
计算机应用 2020, 40 (
4
): 1030-1037. DOI:
10.11772/j.issn.1001-9081.2019081390
摘要
(
711
)
PDF
(3567KB)(
620
)
可视化
收藏
针对高光谱图像(HSI)训练数据获取困难的问题,采用了一种新的HSI半监督分类框架,该框架利用有限的标记数据和丰富的未标记数据来训练深度神经网络。同时,由于高光谱样本分布是不平衡的,导致不同样本分类难度存在巨大差异,采用原始交叉熵损失函数无法刻画这种分布特征,因而分类效果不理想。为了解决这个问题,在半监督分类框架中提出一种基于焦点损失的多分类目标函数。最后,考虑到HSI的空间信息对分类的影响,结合马尔可夫随机场(MRF),利用样本空间特征进一步改善分类效果。在两个常用的HSI数据集上,将所提方法与多种典型算法进行了实验对比分析,实验结果表明所提方法能够产生优于其他对比方法的分类效果。
参考文献
|
相关文章
|
多维度评价