期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 基于组合类别空间的随机游走推荐算法
樊玮, 谢聪, 肖春景, 曹淑燕
计算机应用    2019, 39 (4): 984-988.   DOI: 10.11772/j.issn.1001-9081.2018081822
摘要561)      PDF (827KB)(373)    收藏
传统的类别驱动方法只考虑类别间的关联或是将其组织成扁平或层次结构,而项目和类别对应关系复杂,其他信息容易被忽略。针对这个问题提出基于组合类别空间的随机游走推荐算法,更好地组织了项目类别信息、缓解了数据稀疏。首先,建立一个用哈斯图表示的项目组合类别空间,将项目和类别复杂的一对多关系映射成一对一的简单关系,并表示用户上下层次、同层次及跨层次的项目类别间的跳转;接着,定义组合类别空间的语义关系及链接、偏好两种语义距离,更好地定性、定量描述用户动态偏好的变化;然后,结合组合类别空间上用户浏览图的语义关系、语义距离、用户行为跳转、跳转次数、时序、评分等各种信息,利用随机游走建立用户个性化类别偏好模型;最后,根据用户个性化偏好完成基于用户的协同过滤项目推荐。在MovieLens数据集上的实验显示,与基于用户的协同过滤(UCF)、基于类别关联的推荐模型(UBGC和GENC)相比,所提算法推荐的F1-score提高了6~9个百分点,平均绝对误差(MAE)减小了20%~30%;与基于类别层次潜在因子模型(CHLF)相比,所提算法推荐的F1-score提高了10%。实验结果表明,所提算法在排序推荐上优于传统基于类别的推荐算法。
参考文献 | 相关文章 | 多维度评价
2. 基于会话时序相似性的矩阵分解数据填充
乔永卫, 张宇翔, 肖春景
计算机应用    2018, 38 (8): 2236-2242.   DOI: 10.11772/j.issn.1001-9081.2018010264
摘要470)      PDF (1046KB)(402)    收藏
针对已有数据填充方法只考虑评分信息和传统相似性,无法捕获用户间真实相似关系的问题,提出了基于会话时序相似性的矩阵分解数据填充方法来缓解数据稀疏性、提高推荐精度。首先,分析了传统相似性的缺陷,并根据时序相似性和相异性提出了基于会话时序相似性度量,它结合了时间上下文和评分信息,能更好地捕获用户间的真实关系,从而识别近邻;接着,根据目标用户的近邻及其消费的项目抽取了具有用户和项目潜在影响因素的待填充的关键项目集合,并利用矩阵分解填充关键项目集合;然后,利用隐含狄利克雷分布(LDA)抽取用户在每个时间段内的概率主题分布,并利用时间惩罚权值建立用户动态偏好模型;最后,根据用户间概率主题分布的相关性和基于用户的协同过滤完成项目推荐。实验结果表明,与其他数据填充方法相比,基于会话时序相似性的矩阵分解数据填充方法在不同稀疏度下都能降低平均绝对误差(MAE),提高推荐性能。
参考文献 | 相关文章 | 多维度评价
3. 基于动态聚类的旅游线路推荐
肖春景, 夏克文, 乔永卫, 张宇翔
计算机应用    2017, 37 (8): 2395-2400.   DOI: 10.11772/j.issn.1001-9081.2017.08.2395
摘要680)      PDF (916KB)(689)    收藏
基于会话的协同过滤用固定时间窗划分交互历史并将用户兴趣表示为这些阶段的序列,但是旅游数据的高稀疏性会导致某些阶段内没有交互行为和近邻相似度计算困难的问题。为了缓解数据稀疏,有效利用数据特性,提出了基于动态聚类的旅游线路推荐算法。该方法首先分析了旅游数据不同于其他标准数据的特性;其次利用动态聚类得到的变长时间窗口对游客交互历史进行划分,利用潜在狄利克雷分布(LDA)抽取每个阶段的概率主题分布,结合时间惩罚权值建立用户兴趣漂移模型;接着,通过反映年龄、线路季节、价格等因素的游客特征向量为目标游客选择近邻和候选线路集合;最后根据候选线路和游客的概率主题相关度完成线路推荐。该方法通过采用变长时间窗口不但缓解了数据稀疏,而且划分的阶段数目不需提前指定,而是根据数据特性自动生成;近邻选择时采用特征向量而非旅游数据进行相似度计算,避免了由于数据稀疏无法计算的问题。在实际旅游数据上的大量实验结果表明,该方法不仅很好适应了旅游数据特征,而且提高了旅游线路的推荐精度。
参考文献 | 相关文章 | 多维度评价
4. 脱机手写体签名识别的小波包隐马尔可夫模型
肖春景 李春利 张敏
计算机应用    2010, 30 (2): 445-448.  
摘要1906)      PDF (565KB)(1191)    收藏
提出了一种基于小波包隐马尔可夫的脱机手写体签名识别方法。该方法用小波包对归一化的签名图像进行特征提取,用混合高斯模型刻画各频带的小波包的系数分布,并用隐马尔可夫的状态转移模型描述了高斯模型在各频带间的相关性和依赖性。该方法数据预处理简单,特征提取完全可逆,避免了复杂分割,很好地描述了签名图像的小波包分解的统计特性,实验表明具有较好的抗噪性、鲁棒性、适应性和较高的识别率。
相关文章 | 多维度评价