|
1.
基于R-Grams的文本聚类方法
王贤明, 谷琼, 胡智文
计算机应用
2015, 35 (11):
3130-3134.
DOI: 10.11772/j.issn.1001-9081.2015.11.3130
针对传统文本聚类中存在着聚类准确率和召回率难以平衡等问题,提出了一种基于R-Grams文本相似度计算方法的文本聚类方法.该方法首先通过将待聚类文档降序排列,其次采用R-Grams文本相似度算法计算文本之间的相似度并根据相似度实现各聚类标志文档的确定并完成初始聚类,最后通过对初始聚类结果进行聚类合并完成最终聚类.实验结果表明:聚类结果可以通过聚类阈值灵活调整以适应不同的需求,最佳聚类阈值为15左右.随着聚类阈值的增大,各聚类准确率增大,召回率呈现先增后降的趋势.此外,该聚类方法避免了大量的分词、特征提取等繁琐处理,实现简单.
参考文献 |
相关文章 |
多维度评价
|
|