针对时滞混沌系统在时滞未知条件下的参数及时滞辨识问题,提出基于时间注意力机制的时滞混沌系统参数辨识模型——PINN-TA。首先,采用时间注意力机制提取系统状态序列的关联特征,以实现对系统时滞的辨识;其次,利用循环神经网络(RNN)隐式地近似系统微分方程,形成关于系统参数的代数方程;最后,将代数方程的根作为参数辨识的结果。分别以时滞Logistic方程、Ikeda微分方程和Mackey-Glass混沌系统等典型时滞混沌系统作为待辨识系统,对PINN-TA模型和多种智能搜索算法进行对比实验。仿真结果表明,相较于人工雨滴算法(ARA)、混合布谷鸟搜索算法(HCS)、全局花朵授粉算法(GFPA)、元胞自动机鲸鱼算法(CWA)等现有智能搜索算法,PINN-TA模型对参数和时滞的辨识误差降低了90.31%~99.36%,且辨识耗时缩短至18.59~19.43 ms。可见,PINN-TA模型能够满足精度和实时性要求,为时滞混沌系统参数及时滞辨识提供可行的解决方案。
针对图像水印的鲁棒性,运用协同序参量理论,提出一种基于协同序参量的定量评价方法。对载体图像完成各类鲁棒性实验,计算比较了各模式的协同序参量初始值,使用序参量演化曲线进行验证,得到相应的鲁棒性定量评价。评价结果与相关系数法一致,但更加方便和实用。