Toggle navigation
首页
期刊介绍
期刊简介
历史沿革
收录情况
获奖情况
引用指标
编委会
期刊在线
文章推荐
过刊浏览
专辑专刊
下载排行
阅读排行
投稿指南
组稿方向
投稿须知
论文模板
常见问题
署名变更申请
单位变更申请
版权转让协议
中图分类号
引言书写要求
参考文献著录格式
插图与表格规范
英文摘要书写要求
收费标准
学术诚信
联系我们
编辑部联系方式
位置示意图
期刊订阅办法
广告合作
English
期刊
出版年
关键词
结果中检索
(((胡章芳[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
基于时频域的卷积神经网络运动想象脑电信号识别方法
胡章芳, 张力, 黄丽嘉, 罗元
计算机应用 2019, 39 (
8
): 2480-2483. DOI:
10.11772/j.issn.1001-9081.2018122553
摘要
(
938
)
PDF
(643KB)(
443
)
可视化
收藏
针对目前运动想象脑电(EEG)信号识别率较低的问题,考虑到脑电信号蕴含着丰富的时频信息,提出一种基于时频域的卷积神经网络(CNN)运动想象脑电信号识别方法。首先,利用短时傅里叶变换(STFT)对脑电信号的相关频带进行预处理,并将多个电极的时频图组合构造出一种二维时频图;然后,针对二维时频图的时频特性,通过一维卷积的方法设计了一种新颖的CNN结构;最后,通过支持向量机(SVM)对CNN提取的特征进行分类。基于BCI数据集的实验结果表明,所提方法的平均识别率为86.5%,优于其他传统运动想象脑电信号识别方法;同时将该方法应用在智能轮椅上,验证了其有效性。
参考文献
|
相关文章
|
多维度评价
Select
2.
融入二维码信息的自适应蒙特卡洛定位算法
胡章芳, 曾林全, 罗元, 罗鑫, 赵立明
计算机应用 2019, 39 (
4
): 989-993. DOI:
10.11772/j.issn.1001-9081.2018091910
摘要
(
807
)
PDF
(790KB)(
438
)
可视化
收藏
蒙特卡洛定位(MCL)算法存在计算量大、定位精度差的问题,由于二维码具有携带信息的多样性、二维码识别的方便性与易用性的特点,提出一种融入二维码信息的自适应蒙特卡洛定位算法。首先,利用二维码提供的绝对位置信息修正里程计模型的累计误差后进行采样;然后,采用激光传感器提供的观测模型确定粒子的重要性权重;最后,因为重采样部分采用固定样本集会导致大计算量,所以利用Kullback-Leibler距离(KLD)进行重采样,根据粒子在状态空间的分布情况自适应调整下一次迭代所需粒子数,从而减小计算量。基于移动机器人进行的实验结果表明,改进算法与传统蒙特卡洛算法相比定位精度提高了15.09%,时间缩短了15.28%。
参考文献
|
相关文章
|
多维度评价
Select
3.
基于改进闭环检测算法的视觉同时定位与地图构建
胡章芳, 鲍合章, 陈旭, 范霆铠, 赵立明
计算机应用 2018, 38 (
3
): 873-878. DOI:
10.11772/j.issn.1001-9081.2017082004
摘要
(
571
)
PDF
(1040KB)(
355
)
可视化
收藏
针对视觉同时定位与地图构建(SLAM)中容易由误差累积导致构建地图不一致的问题,提出了一种基于改进闭环检测算法的视觉SLAM(V-SLAM)系统。为了减小移动机器人长时间运行带来的累计误差,引入一种改进的闭环检测算法,改进相似性得分函数,减小感知歧义,提高闭环的识别率;同时为了减小计算量,通过Kinect直接获取环境图像以及深度信息,并采用计算量小、鲁棒性好的ORB特征进行特征提取和匹配;采用随机抽样一致性(RANSAC)算法进行误匹配删除,从而获得更准确的匹配点对,然后用PnP计算出相机位姿;更稳定、准确的初始估计位姿对后端处理至关重要,利用g2o对位姿进行无结构的迭代优化;最后在后端采用以集束调整(BA)为核心的图优化方法对位姿和路标进行优化。最终实验结果表明该系统能够满足实时性要求,并可以获得更加准确的位姿估计。
参考文献
|
相关文章
|
多维度评价
Select
4.
基于图割理论的尺度自适应人脸跟踪算法
胡章芳, 秦阳鸿
计算机应用 2017, 37 (
4
): 1189-1192. DOI:
10.11772/j.issn.1001-9081.2017.04.1189
摘要
(
515
)
PDF
(665KB)(
554
)
可视化
收藏
针对连续自适应的Mean-Shift(Camshift)算法跟踪人脸时尺度过度放缩这一问题,提出了一种基于图割的Camshift人脸跟踪算法。首先,在每一帧图像的Camshift迭代结果内建立图割区域,使用高斯肤色模型作为图割权值分割出图割区域内肤色团块;然后,计算该肤色团大小得到目标真实尺度,并比较与上一帧图像跟踪框内肤色团的尺度来判断是否需要重新跟踪目标;最后,再以该团块作为下一帧跟踪目标。实验结果表明,基于图割的Camshift人脸跟踪算法有效地克服了跟踪时其他肤色区域的干扰,能有效地反映人体快速运动中人脸真实尺度变化,同时防止Camshift算法丢失跟踪目标而陷入局部最优解,具有较好的可用性和鲁棒性。
参考文献
|
相关文章
|
多维度评价