Toggle navigation
首页
期刊介绍
期刊简介
历史沿革
收录情况
获奖情况
引用指标
编委会
期刊在线
文章推荐
过刊浏览
专辑专刊
下载排行
阅读排行
投稿指南
组稿方向
投稿须知
论文模板
常见问题
署名变更申请
单位变更申请
版权转让协议
中图分类号
引言书写要求
参考文献著录格式
插图与表格规范
英文摘要书写要求
收费标准
学术诚信
联系我们
编辑部联系方式
位置示意图
期刊订阅办法
广告合作
English
期刊
出版年
关键词
结果中检索
(((苏品刚[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
基于改进的快速稀疏编码的图像特征提取
尚丽 苏品刚 周燕
计算机应用 2013, 33 (
03
): 656-659. DOI:
10.3724/SP.J.1087.2013.00656
摘要
(
885
)
PDF
(678KB)(
506
)
可视化
收藏
考虑图像特征系数的最大化稀疏分布和特征基的正交性,在快速稀疏编码(FSC)模型的基础上,提出一种改进的FSC模型。该模型利用迭代法解决了基于L
1
范数的归一化最小二乘法和基于L
2
范数的约束最小二乘法的凸优化问题,能够实现完备基和过完备基的学习,有效提取出图像的最佳特征,且比标准稀疏编码(BSC)模型的收敛速度快。分别利用自然场景图像和掌纹图像作为训练数据进行特征提取测试,并进一步利用提取的特征基进行图像重构实验,同时与BSC模型的图像重构结果进行对比,实验结果证实了所提出的改进FSC模型能够快速、有效地实现图像的特征提取。
参考文献
|
相关文章
|
多维度评价
Select
2.
基于模糊径向基神经网络和稀疏表示的毫米波图像恢复
尚丽 苏品刚 陈杰
计算机应用 2012, 32 (
07
): 1871-1874. DOI:
10.3724/SP.J.1087.2012.01871
摘要
(
1273
)
PDF
(677KB)(
768
)
可视化
收藏
针对毫米波(MMW)图像包含大量未知噪声、图像分辨率较低的问题,考虑模糊径向基函数神经网络(F-RBFNN)的非线性滤波特性和基于K-奇异值分解(K-SVD)稀疏表示(SR)的自适应消噪特性,提出了一种级联消噪的毫米波图像恢复方法。F-RBFNN将模糊逻辑的知识表达和推理能力与RBFNN的快速学习能力和泛化能力结合起来,可根据实际问题调整网络结构参数,对MMW图像达到非线性滤波的目的。进一步利用K-SVD稀疏表示具有人眼视觉特性,在保持目标特征的同时可有效消噪的优点,对FRBFNN的训练结果再次进行局部图像降噪,得到分辨率较高的MMW图像。采用相对信噪比(RSNR)作为消噪图像的评价标准,实验结果表明,与F-RBFNN、K-SVD消噪、小波消噪等方法相比,基于F-RBFNN和SR的降噪方法能够获得较好的MMW图像恢复质量。
参考文献
|
相关文章
|
多维度评价
Select
3.
基于K-SVD的偏微分方程模型在毫米波图像恢复中的应用
尚丽 苏品刚
计算机应用 2012, 32 (
03
): 756-758. DOI:
10.3724/SP.J.1087.2012.00756
摘要
(
1344
)
PDF
(542KB)(
696
)
可视化
收藏
在图像被大噪声污染或具有较低分辨率时,传统的偏微分方程(PDE)模型的稳态解会产生明显的阶梯效应,恢复图像质量较差。针对此缺点,提出了一种新的基于K-奇异值分解(K-SVD)的PDE图像恢复方法,并应用于毫米波(MMW)图像的恢复。K-SVD是一种图像稀疏表示方法,对图像进行稀疏估计的同时实现去噪,对噪声方差较大的图像具有较好的去噪鲁棒性。首先采用K-SVD对MMW图像进行去噪,对去噪图像再应用全变分(TV)模型的PDE方法进行恢复。对所提出的算法分别使用模拟的MMW图像和真实的MMW图像进行测试,并进一步和K-SVD、PDE方法比较,同时使用峰值信噪比(PSNR)对恢复图像进行评价。根据不同噪声方差下的PSNR数据和恢复图像的视觉效果,实验结果证明了所提方法能够有效地恢复MMW图像。
参考文献
|
相关文章
|
多维度评价
Select
4.
基于局部非负稀疏编码的掌纹识别方法
尚丽 苏品刚 杜吉祥
计算机应用 2011, 31 (
06
): 1609-1612. DOI:
10.3724/SP.J.1087.2011.01609
摘要
(
1485
)
PDF
(639KB)(
481
)
可视化
收藏
为了更有效地提取出图像的局部特征,在传统的非负稀疏编码(Hoyer-NNSC)算法的基础上,提出了一种新的具有稀疏度约束的局部NNSC (LNNSC)算法。该算法考虑了特征基向量的稀疏度约束和特征的最大化代表性,能够得到强化的图像局部特征;同时利用拉普拉斯密度模型作为特征系数的稀疏惩罚函数,保证了图像结构的稀疏性。在特征提取的基础上,进一步利用径向基概率神经网络(RBPNN)分类器,实现了掌纹的自动识别。仿真实验结果表明,与基于非负矩阵分解(NMF)、局部非负矩阵分解(LNMF)和Hoyer-NNSC的掌纹识别方法相比,该算法在掌纹识别研究中有较高的可行性和实用性。
相关文章
|
多维度评价