期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 基于增强型对抗学习的无参考图像质量评价算法
曹玉东, 蔡希彪
计算机应用    2020, 40 (11): 3166-3171.   DOI: 10.11772/j.issn.1001-9081.2020010012
摘要589)      PDF (1035KB)(705)    收藏
为了提高无参考图像质量评价(NR-IQA)方法的性能,参考先进的深度生成对抗网络(GAN)研究成果,提出一种基于增强型对抗学习的无参考图像质量评价算法,即通过改进损失函数、网络模型结构来增强对抗学习强度,输出更可靠的模拟“参考图”,进而可以像全参考图像质量评价(FR-IQA)方法一样模拟人的视觉比较过程。首先,利用数据集中失真的图像和未失真的原图像作为输入,从而基于增强对抗学习来训练网络模型;然后,利用该模型输出待测图像的模拟仿真图,提取仿真图的深度卷积特征;最后,将仿真图和待测失真图的卷积特征相融合,并输入到训练好的图像质量评价回归网络,输出图像的评测分数。在LIVE、TID2008和TID2013数据集上完成实验。实验结果表明,所提算法在图像质量上的总体客观评价性能优于当前的主流算法,与人的主观评价表现出的性能相一致。
参考文献 | 相关文章 | 多维度评价
2. 基于特征融合的多约束非负矩阵分解算法
孙静, 蔡希彪, 孙福明
计算机应用    2017, 37 (10): 2834-2840.   DOI: 10.11772/j.issn.1001-9081.2017.10.2834
摘要633)      PDF (1142KB)(604)    收藏
针对非负矩阵分解后数据的稀疏性降低、单一图像特征不能够很好地描述图像内容的问题,提出一种基于特征融合的多约束非负矩阵分解算法。该算法不仅考虑了少量已知样本的标签信息和稀疏约束,还对其进行了图正则化处理,而且将分解后的具有不同稀疏度的图像特征进行了融合,从而增强了算法的聚类性能和有效性。在Yale-32和COIL20数据集上进行的对比实验进一步验证了该算法具有更好的聚类精度和稀疏性。
参考文献 | 相关文章 | 多维度评价