Toggle navigation
首页
期刊介绍
期刊简介
历史沿革
收录情况
获奖情况
引用指标
编委会
期刊在线
文章推荐
过刊浏览
专辑专刊
下载排行
阅读排行
投稿指南
组稿方向
投稿须知
论文模板
常见问题
署名变更申请
单位变更申请
版权转让协议
中图分类号
引言书写要求
参考文献著录格式
插图与表格规范
英文摘要书写要求
收费标准
学术诚信
联系我们
编辑部联系方式
位置示意图
期刊订阅办法
广告合作
English
期刊
出版年
关键词
结果中检索
(((薛富强[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
基于自适应小生境递阶遗传算法的RBF均衡器
薛富强 葛临东 王彬
计算机应用
摘要
(
1716
)
PDF
(648KB)(
831
)
可视化
收藏
递阶遗传算法(HGA)一次只能确定一个最优个体。采用小生境递阶遗传算法,依据进化信息自适应调整小生境区域,在均衡数据误比特率最低,隐层中心聚类有效性最佳的基础上,可以从多个进化优解中确定出最佳结构的径向基(RBF)神经网络均衡器。仿真结果验证了算法的有效性和稳定性。
相关文章
|
多维度评价
Select
2.
基于动态自适应遗传算法的调制信号特征选择
薛富强 葛临东 吴月娴
计算机应用
摘要
(
2137
)
PDF
(515KB)(
1484
)
可视化
收藏
神经网络分类器已被广泛应用在自动模式识别中。降低输入数据特征维数对其结构的简化和性能的提高至关重要。简单遗传算法早熟收敛和局部搜索能力弱的缺陷,使它在特征选择中的效果不理想。提出基于进化群体中值信息的动态自适应遗传算法。仿真结果表明,该算法优选特征子集速度快,解的质量稳定,神经网络分类器的识别准确率有显著提高。
相关文章
|
多维度评价