期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 情感增强的对话文本情绪识别模型
王雨, 袁玉波, 过弋, 张嘉杰
《计算机应用》唯一官方网站    2023, 43 (3): 706-712.   DOI: 10.11772/j.issn.1001-9081.2022010044
摘要715)   HTML47)    PDF (1123KB)(372)    收藏

针对现有的许多研究忽略了说话人的情绪和情感的相关性的问题,提出一种情感增强的图网络对话文本情绪识别模型——SBGN。首先,将主题和对话意图融入文本,并微调预训练语言模型RoBERTa以提取重构的文本特征;其次,给出情绪分析的对称学习结构,将重构特征分别输入图神经网络(GNN)情绪分析模型和双向长短时记忆(Bi-LSTM)情感分类模型;最后,融合情绪分析和情感分类模型,将情感分类的损失函数作为惩罚以构建新的损失函数,并通过学习调节得到最优的惩罚因子。在公开数据集DailyDialog上的实验结果表明,相较于DialogueGCN模型与目前最先进的DAG-ERC模型,SBGN模型的微平均F1分别提高16.62与14.81个百分点。可见,SBGN模型能有效提高对话系统情绪分析的性能。

图表 | 参考文献 | 相关文章 | 多维度评价
2. 基于肤色学习的多人脸前景抽取方法
戴嫣然, 戴国庆, 袁玉波
计算机应用    2021, 41 (6): 1659-1666.   DOI: 10.11772/j.issn.1001-9081.2020091397
摘要315)      PDF (1935KB)(530)    收藏
针对多人脸场景下快速准确提取人脸内容的问题,提出了基于肤色学习的多人脸前景抽取方法。首先,给出了基于肤色学习的肤色前景分割模型。根据肤色专家的论文结果,采集了著名的SPA数据库的1 200张人脸进行肤色抽样,建立学习模型以得到每个人种在颜色空间的肤色参数,据此进行肤色图像分割,得到肤色前景。其次,利用人脸特征点学习算法,以常见人脸68个特征点为目标,结合肤色前景信息分割出人脸种子区域;并计算人脸中心点,来构建人脸椭圆边界模型以及确定遗传范围。最后,建立了有效抽取算法,在人脸椭圆边界内利用遗传机制进行人脸再生,从而抽取得到有效人脸区域。以三类不同数据库为基础,收集了100张有代表性的多人脸图像,实验结果表明所提方法对这些图像的多人脸抽取的结果准确率达到98.4%以上,且该方法对中密度人群的人脸内容抽取有显著效果,并为人脸识别算法的准确性和可用性提供了基础。
参考文献 | 相关文章 | 多维度评价
3. 基于人眼状态的瞌睡识别算法
孙琳, 袁玉波
《计算机应用》唯一官方网站    2021, 41 (11): 3213-3218.   DOI: 10.11772/j.issn.1001-9081.2020122058
摘要614)   HTML14)    PDF (1688KB)(421)    收藏

已有瞌睡识别算法多数基于机器学习或深度学习,没有考虑到人眼闭合状态序列与瞌睡之间的关系。针对上述问题,提出了一种基于人眼状态的瞌睡识别算法。首先,提出了人眼分割和面积计算模型,基于人脸68个特征点,根据人眼特征点构成的极大多边形分割出眼睛区域,并利用眼睛像素点的总数代表眼睛面积大小;其次,计算极大状态下的人眼面积,并利用关键帧挑选算法挑选出最能代表睁眼程度的4帧,根据这4帧的人眼面积与极大状态下的人眼面积计算睁眼阈值,从而构建眼睛闭合度得分模型来确定人眼闭合状态;最后,根据输入视频的人眼闭合得分序列,构建了基于连续多帧序列分析的瞌睡识别模型。在两个国际常用的打哈欠检测数据集(YawDD)和NTHU-DDD数据集上进行瞌睡状态识别,实验结果表明,所提算法在两个数据集上的识别准确率均在80%以上,尤其是在YawDD数据集上,识别准确率达到94%以上。该算法可应用于驾驶员驾驶状态检测、学习者课中状态分析等。

图表 | 参考文献 | 相关文章 | 多维度评价
4. 基于特征部位圆形域的人脸图像修复方法
王肖, 魏嘉旺, 袁玉波
计算机应用    2020, 40 (3): 847-853.   DOI: 10.11772/j.issn.1001-9081.2019071212
摘要486)      PDF (1301KB)(453)    收藏
针对基于样本块的纹理合成方法存在的修复结构不合理和效率较低的问题,提出基于特征部位圆形域的人脸图像修复方法。首先进行人脸特征点定位,依据特征点分布将人脸图像分割出4个特征部位圆形域,明确特征搜索域范围。然后在优先级模型中以指数函数的形式改变置信度项的衰减趋势,并结合结构梯度项使用局部梯度信息约束优先级,提高修复结果的结构连通性。在匹配块搜索阶段,根据目标块与各个特征部位圆形域的相对位置,确定匹配块的搜索域,提升搜索效率。最终在结构相似性的标准下选择结构最佳匹配块,完成结构连通的人脸图像修复。与4个先进的方法相比较,所提方法修复图像的峰值信噪比(PSNR)平均提升了1.219~2.663 dB,时间消耗平均减小了34.7%~69.6%。实验结果表明,该方法对保持人脸图像的结构连通性和视觉合理性有显著效果,在修复的精度和时间上都表现优异。
参考文献 | 相关文章 | 多维度评价
5. 基于凸边界的学习样本抽取方法
顾依依, 谈询滔, 袁玉波
计算机应用    2019, 39 (8): 2281-2287.   DOI: 10.11772/j.issn.1001-9081.2019010162
摘要576)      PDF (1258KB)(427)    收藏
学习样本的质量和数量对于智能数据分类系统至关重要,但在数据分类系统中没有一个通用的良好方法用于发现有意义的样本。以此为动机,提出数据集合凸边界的概念,给出了快速发现有意义样本集合的方法。首先,利用箱型函数对学习样本集合中的异常和特征不全样本进行清洗;接着,提出数据锥的概念,对归一化的学习样本进行锥形分割;最后,对每个锥形样本子集进行中心化,以凸边界为基础提取距离凸边界差异极小的样本构成凸边界样本集合。实验在12个UCI数据集上进行,并与高斯朴素贝叶斯(GNB)、决策树(CART)、线性判别分析(LDA)、提升算法(AdaBoost)、随机森林(RF)和逻辑回归(LR)这六种经典的数据分类算法进行对比。结果表明,各个算法在凸边界样本集合的训练时间显著缩短,同时保持了分类性能。特别地,对包含噪声数据较多的数据集,如剖腹产、电网稳定性、汽车评估等数据集,凸边界样本集合能使分类性能得到提升。为了更好地评价凸边界样本集合的效率,以样本变化率和分类性能变化率的比值定义了样本清洗效率,并用该指标来客观评价凸边界样本的意义。清洗效率大于1时说明方法有效,且数值越高效果越好。在脉冲星数据集合上,所提方法对GNB算法的清洗效率超过68,说明所提方法性能优越。
参考文献 | 相关文章 | 多维度评价
6. 人脸特征点定位的自适应窗回归方法
魏嘉旺, 王肖, 袁玉波
计算机应用    2019, 39 (5): 1459-1465.   DOI: 10.11772/j.issn.1001-9081.2018102057
摘要485)      PDF (1191KB)(372)    收藏
针对显式形状回归(ESR)对于一些面部遮挡、面部表情过大样本定位精度低的问题,提出一种自适应窗回归方法。首先,应用先验信息为每张图片生成精确的人脸框,用人脸框的中心点对人脸进行特征映射,并进行相似变换得到多个初始形状;其次,提出一种自适应窗口调整策略,基于先前回归的均方误差自适应地调整特征窗口大小;最后,基于互信息(MI)的特征选择策略,提出新的相关性计算方法,在候选像素集中选出最相关的特征。在三个公开数据集LFPW、HELEN、COFW上,相较于ESR算法,所提方法的定位精度分别提升7.52%、5.72%和5.89%。实验结果表明,自适应窗回归方法可以有效提高人脸特征点定位精度。
参考文献 | 相关文章 | 多维度评价
7. 基于极端学习机的人脸特征深度稀疏自编码方法
张欢欢, 洪敏, 袁玉波
计算机应用    2018, 38 (11): 3193-3198.   DOI: 10.11772/j.issn.1001-9081.2018041274
摘要513)      PDF (1002KB)(421)    收藏
针对输入人脸特征的不准确性导致识别系统识别率不高的问题,提出了一种有效的基于极端学习机(ELM)的人脸特征深度稀疏自编码(DSAE)方法。首先,利用截断式核范数构造损失函数,通过最小化损失函数提取人脸图像的稀疏特征;其次,利用极端学习机自编码器(ELM-AE)模型进行人脸特征的自编码,实现数据维度的降低以及噪声过滤;最后,通过经验风险极小化得到最优的深度结构。在ORL、IMM、Yale和UMIST人脸数据集上的实验结果表明,DSAE方法对高维人脸图像的识别率明显优于极端学习机、随机森林(RF)等算法,且具有良好的泛化性能。
参考文献 | 相关文章 | 多维度评价
8. 基于遗传机制和高斯变差的自动前景提取方法
陈凯星, 刘赟, 王金海, 袁玉波
计算机应用    2017, 37 (11): 3231-3237.   DOI: 10.11772/j.issn.1001-9081.2017.11.3231
摘要541)      PDF (1023KB)(493)    收藏
针对无监督或全自动前景提取这一技术难点问题,提出了一种基于遗传机制和高斯变差的自动前景提取(GFO)方法。首先,利用高斯变差提取图像中的相对重要区域,定义为候选种子前景;之后,利用原始图像和候选种子前景的边沿信息,根据连通性和凸球原则生成前景目标区域轮廓,称之为星凸轮廓;最后,构造适应性函数,选择种子前景,利用选择、交叉及变异的遗传机制,得到精确且有效的最终前景。在Achanta数据库和多个视频上的实验结果表明,GFO方法的性能优于已有的基于高斯变差的自动前景提取(FMDOG)方法,且在识别的准确率、召回率以及 F β指标上都取得了较好的抽取效果。
参考文献 | 相关文章 | 多维度评价