期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 基于小波的搜索量聚类及在变量选择中的应用
袁铭
计算机应用    2015, 35 (3): 802-806.   DOI: 10.11772/j.issn.1001-9081.2015.03.802
摘要635)      PDF (766KB)(478)    收藏

针对使用网络购物搜索量数据建立预测模型时的变量选择问题,提出一种基于连续小波变换(CWT)及其逆变换的聚类方法。算法充分考虑了搜索量的数据特征,将原始序列分解成为不同时间尺度下的周期成分,并重构为输入向量。在此基础上通过加权模糊C均值(FCM)方法进行聚类。变量选择是根据聚类后每个分类中的关键词隶属度函数值确定的,选择效果通过我国居民消费价格指数(CPI)的预测模型进行验证。结果表明,搜索量序列具有不同长度的周期成分,聚类后同组关键词具有明显的商品类型一致性。与其他变量选择方法相比,基于小波重构序列聚类的预测模型具有更高的预测精度,单步和三步预测相对误差仅为0.3891%和0.5437%,预测变量也具有清晰的经济含义,因此特别适用于解决大数据背景下高维预测模型的变量选择问题。

参考文献 | 相关文章 | 多维度评价
2. 标度曲线拟合与金融时间序列聚类
袁铭
计算机应用    2014, 34 (11): 3344-3347.   DOI: 10.11772/j.issn.1001-9081.2014.11.3344
摘要468)      PDF (767KB)(546)    收藏

针对金融时间序列具有的多重分形特征,提出基于标度曲线测度沪深300指标股之间的相似性并实现聚类。该方法首先使用多标度退势波动分析(MSDFA)拟合不同自相关阶数下收益率序列的标度曲线,然后抽取其分布或形态特征构造模式向量。聚类通过含权K-means算法实现,最优类别数根据分类适确性指标(DBI)确定。结果显示,基于标度曲线的聚类能够揭示出股市的行业聚集性和板块间的关联性,在此基础上构造的投资组合可以显著降低风险,并且效果优于基于原始序列线性趋势特征的聚类。

参考文献 | 相关文章 | 多维度评价