期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 无负采样的正样本增强图对比学习推荐方法PAGCL
汪炅, 唐韬韬, 贾彩燕
《计算机应用》唯一官方网站    2024, 44 (5): 1485-1492.   DOI: 10.11772/j.issn.1001-9081.2023050756
摘要292)   HTML19)    PDF (2404KB)(727)    收藏

对比学习(CL)因能够提取数据本身包含的监督信号而被广泛应用于推荐任务。最近的研究表明,CL在推荐方面的成功依赖于对比损失——互信息噪声对比估计(InfoNCE)损失带来的节点分布的均匀性。此外,另一项研究证明贝叶斯个性化排序(BPR)损失的正项与负项分别带来的对齐性和均匀性有助于提高推荐性能。由于在CL框架中对比损失能够带来比BPR负项更强的均匀性,BPR负项存在的必要性值得商榷。实验分析表明在对比框架中BPR的负项是不必要的,并基于这一观察提出了无需负采样的联合优化损失,可应用于经典的CL方法并达到相同或更高的性能。此外,与专注于提高均匀性的研究不同,为进一步加强对齐性,提出一种新颖的正样本增强的图对比学习方法(PAGCL),该方法使用随机正样本在节点表示层面进行扰动。在多个基准数据集上的实验结果表明,PAGCL在召回率及归一化折损累积增益(NDCG)这两个常用指标上均优于SOTA方法自监督图学习(SGL)、简单图对比学习(SimGCL)等,且相较于基模型轻量化图卷积(LightGCN)的NDCG@20提升最大可达17.6%。

图表 | 参考文献 | 相关文章 | 多维度评价
2. 融合重叠社区正则化及隐式反馈的协同过滤方法
李翔锟, 贾彩燕
计算机应用    2021, 41 (1): 53-59.   DOI: 10.11772/j.issn.1001-9081.2020060995
摘要401)      PDF (956KB)(478)    收藏
针对目前推荐系统存在的数据稀疏和冷启动等问题,提出了一种融合重叠社区正则化及隐式反馈的协同过滤方法(OCRIF),该方法不仅考虑了用户在社交网络中的社区结构,而且将用户评分信息与社交信息的隐式反馈融入推荐模型之中。此外,由于网络表示学习可以有效学习节点在社交网络的全局结构上的近邻信息,提出了一种网络表示学习增强的OCRIF(OCRIF+),该方法结合社交网络中用户在网络中的低维表示与用户-商品特征,能更有效地刻画用户之间的相似度及用户对兴趣社区的归属度。多个真实数据集上的实验结果显示:所提出的方法的推荐效果优于同类方法,与TrustSVD方法相比,在FilmTrust、DouBan以及Ciao数据集上,该方法的均方根误差(RMSE)分别下降了2.74%、2.55%以及1.83%,平均绝对误差(MAE)分别下降了3.47%、2.97%以及2.40%。
参考文献 | 相关文章 | 多维度评价