Toggle navigation
首页
期刊介绍
期刊简介
历史沿革
收录情况
获奖情况
引用指标
编委会
期刊在线
文章推荐
过刊浏览
专辑专刊
下载排行
阅读排行
投稿指南
组稿方向
投稿须知
论文模板
常见问题
署名变更申请
单位变更申请
版权转让协议
中图分类号
引言书写要求
参考文献著录格式
插图与表格规范
英文摘要书写要求
收费标准
学术诚信
联系我们
编辑部联系方式
位置示意图
期刊订阅办法
广告合作
English
期刊
出版年
关键词
结果中检索
(((赵大哲[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
结合代价敏感半监督集成学习的糖尿病视网膜病变分级
任福龙, 曹鹏, 万超, 赵大哲
计算机应用 2018, 38 (
7
): 2124-2129. DOI:
10.11772/j.issn.1001-9081.2018010123
摘要
(
530
)
PDF
(1014KB)(
379
)
可视化
收藏
针对传统糖尿病视网膜病变(糖网)分级诊断系统中,由于数据集中缺少病灶区域的标记和类别分布的不平衡性导致无法有效地进行监督性分类的问题,提出基于代价敏感的半监督Bagging(CS-SemiBagging)的糖网分级方法。首先,从眼底图像上删除视网膜血管,并在此图像上检测疑似的红色病灶(微动脉瘤(MAs)与出血斑(HEMs));然后,从颜色、形状和纹理方面提取22维的特征用于描述每个病灶区域;其次,构建一个CS-SemiBagging模型对MAs与HEMs进行分类;最后,依据不同病灶的数量将糖网划分为4级。通过对国际公共数据集MESSIDOR进行糖网分级评估实验,所提方法获得平均准确率为90.2%,与经典的半监督学习的Co-training方法相比提高了4.9个百分点。实验结果表明,CS-SemiBagging方法在无需提供病灶标注的情况下,能够高效自动地对糖网进行分级,从而既能免除医学图像中标注病灶的费时费力,又可以避免样本类别分布不平衡对分类算法的性能影响,获得较好的效果。
参考文献
|
相关文章
|
多维度评价
Select
2.
基于尺度空间中多特征融合的医学影像分类
李博 曹鹏 栗伟 赵大哲
计算机应用 2013, 33 (
04
): 1108-1111. DOI:
10.3724/SP.J.1087.2013.01108
摘要
(
891
)
PDF
(811KB)(
538
)
可视化
收藏
针对现有医学影像分类方法对临床不同类别影像特征描述效果不一致,且尺度变化敏感的问题,提出一种基于尺度空间提取多特征进行融合的分类方法。首先构建高斯差分尺度空间,然后在尺度空间中分别从灰度、纹理、形状、频域四种互补的角度描述医学影像,最后基于最大似然估计理论构建决策级特征融合模型,实现医学影像分类。严格依照IRMA医学影像类别编码标准选择实验数据,结果表明所提方法相对已有方法分类的平均F1值得到了5%~20%不同程度的提高, 更全面描述医学影像信息, 避免了特征降维造成的信息损失,有效提高了分类的准确率,具有临床应用价值。
参考文献
|
相关文章
|
多维度评价
Select
3.
基于粒子群优化的不均衡数据学习
曹鹏 李博 栗伟 赵大哲
计算机应用 2013, 33 (
03
): 789-792. DOI:
10.3724/SP.J.1087.2013.00789
摘要
(
1173
)
PDF
(630KB)(
499
)
可视化
收藏
为了提高重采样算法在不均衡数据学习的性能,提出一种基于粒子群优化的不均衡数据学习方法。通过粒子群优化,以不均衡数据分类评价准则作为目标函数,来优化重采样算法中最佳的采样率,同时对特征进行选择,从而达到最佳的数据分布。该算法在大量UCI数据集上进行了测试,与其他不均衡学习算法进行比较,结果表明该算法具有更高的分类性能; 并验证了同时优化采样率和特征集合,可有效地改进不均衡数据分类效果。
参考文献
|
相关文章
|
多维度评价
Select
4.
结合X-means聚类的自适应随机子空间组合分类算法
曹鹏 李博 栗伟 赵大哲
计算机应用 2013, 33 (
02
): 550-553. DOI:
10.3724/SP.J.1087.2013.00550
摘要
(
1061
)
PDF
(700KB)(
496
)
可视化
收藏
针对大规模数据的分类准确率低且效率下降的问题,提出一种结合X-means聚类的自适应随机子空间组合分类算法。首先使用X-means聚类方法,保持原有数据结构的同时,把复杂的数据空间自动分解为多个样本子空间进行分治学习;而自适应随机子空间组合分类器,提升了基分类器的差异性并自动确定基分类器数量,提升了组合分类器的鲁棒性及分类准确性。该算法在人工和UCI数据集上进行了测试,并与传统单分类和组合分类算法进行了比较。实验结果表明,对于大规模数据集,该方法具有更好的分类精度和健壮性,并提升了整体算法的效率。
相关文章
|
多维度评价