深度卷积神经网络(CNN)在图像超分辨率重建领域表现出卓越性能,然而现有的许多相关方法的模型参数量较多,无法应用至计算资源较低的设备。为缓解上述问题,提出一个轻量级的非对称信息蒸馏网络(AIDN)模型。首先,输入原始图像及其边缘图像以提取有效的特征信息;其次,设计一个非对称信息蒸馏块对提取到的特征进行非线性映射学习;再次,使用上采样模块重建多个残差图像后,将这些残差图像经过注意力机制融合成一个残差图像;最后,将融合的残差图像与输入图像的插值相加后得到超分图像。在Set14、Urban100和Manga109数据集上的实验结果表明,相较于空间自适应特征调制网络(SAFMN),AIDN模型的4倍超分峰值信噪比(PSNR)值分别提升了0.03 dB、0.14 dB和0.06 dB,说明了AIDN模型在模型参数量和模型性能之间取得了更好的平衡。
多项式插值技术是近似理论中一种常见的近似方法,被广泛用于数值分析、信号处理等领域。但传统的多项式插值技术大多是基于数值分析与实验结果相结合得到的,没有统一的理论描述和规律性的解决方案。为此,根据密切多项式近似理论为图像的多项式插值算法提出一个统一的理论框架。密切多项式近似的理论框架包括采样点数目、密切阶数和导数近似规则三个部分,它既可以用于分析现有的多项式插值算法,也可以用于开发新的多项式插值算法。分析了主流多项式插值技术在密切多项式近似理论框架下的表现形式,并以四点二阶密切多项式插值算法为例详细描述了利用密切多项式插值的理论框架开发新的多项式插值算法的一般流程。理论分析和数值实验表明大多数主流插值算法都属于密切多项式插值算法,它们的处理效果与采样点数目、密切阶数和导数近似规则有紧密的关系。
针对传统的插值算法和基于模型的超分辨算法通常会导致图像对比度和清晰度下降等问题,提出了一种基于泰勒展开式与曲率逆向驱动图像超分辨算法。该算法首先采用泰勒公式估计图像灰度值的变化趋势,然后利用等照度线的曲率细化图像边缘特征,并将梯度作为约束条件抑制图像边缘的锯齿与振铃效应。大量实验表明,所提算法在清晰度和信息保留度上比传统算法更具有优势,算法处理结果更符合人眼视觉效果,在泰勒展开式的基础上进行逆向扩散也使该算法的运行效率明显高于传统迭代算法。