期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 基于密集连接卷积神经网络的道路车辆检测与识别算法
邓天民, 冒国韬, 周臻浩, 段志坚
《计算机应用》唯一官方网站    2022, 42 (3): 883-889.   DOI: 10.11772/j.issn.1001-9081.2021030384
摘要389)   HTML11)    PDF (1354KB)(159)    收藏

针对现有道路车辆检测识别算法中存在的检测精度不高、实时性差以及小目标车辆漏检等问题,提出一种基于密集连接卷积神经网络的道路车辆检测与识别算法。首先,基于YOLOv4网络框架,通过采用密集连接的深度残差网络结构,加强特征提取阶段的特征复用,实现对浅层复杂度较低的特征的利用;然后,在多尺度特征融合网络引入跳跃连接结构,强化网络的特征信息融合和表征能力,以降低车辆漏检率;最后,采用维度聚类算法重新计算先验框尺寸,并按照合理的策略分配给不同检测尺度。实验结果表明,该算法在KITTI数据集上获得了98.21%的检测精度和48.05 frame/s的检测速度,对于BDD100K数据集中复杂恶劣环境中的车辆也有较好的检测效果,在满足实时检测要求的同时有效提升检测精度。

图表 | 参考文献 | 相关文章 | 多维度评价
2. 基于改进空间金字塔池化卷积神经网络的交通标志识别
邓天民, 方芳, 周臻浩
计算机应用    2020, 40 (10): 2872-2880.   DOI: 10.11772/j.issn.1001-9081.2020020214
摘要567)      PDF (3595KB)(1005)    收藏
针对雾天、光照、遮挡和大倾角等因素导致的交通标志识别准确率低、泛化性差等问题,提出一种基于神经网络的轻量级交通标志识别方法。首先,利用图像归一化、仿射变换和限制对比度自适应直方图均衡化(CLAHE)方法进行图像预处理,以提高图像质量;其次,基于卷积神经网络(CNN),融合空间金字塔结构和批量归一化(BN)方法构建改进空间金字塔池化卷积神经网络(SPPN-CNN)模型,并利用Softmax分类器实现交通标志分类;最后,选用德国交通标志识别数据集(GTSRB),对比不同图像预处理方法、模型参数和模型结构的训练效果,并验证和测试所提模型。实验结果表明,SPPN-CNN模型的识别精度达到98.04%,损失小于0.1,在低配GPU条件下识别速率大于3 000 frame/s,验证了模型精度高、泛化性强、实时性好的特点。
参考文献 | 相关文章 | 多维度评价
3. 基于Elman神经网络的GNSS/INS全域高精度定位方法
邓天民, 方芳, 岳云霞, 杨其芝
计算机应用    2019, 39 (4): 994-1000.   DOI: 10.11772/j.issn.1001-9081.2018091920
摘要619)      PDF (1000KB)(310)    收藏
针对当前智能网联汽车定位与导航系统无法接收全球导航卫星系统(GNSS)信号引起定位失效的问题,提出一种基于Elman神经网络的GNSS结合惯性导航系统(INS)的全域高精度定位方法。首先,采用神经网络方法,建立了基于Elman网络的GNSS/INS高精度定位训练模型和GNSS失效预测模型;然后,利用GNSS、INS和实时动态(RTK)等定位技术,设计了GNSS/INS高精度定位数据采集实验系统;最后,选取采集的有效实验数据进行了反向传播(BP)神经网络、级联BP(CFBP)神经网络、Elman神经网络的训练模型性能对比分析,并验证了基于Elman网络的GNSS失效预测模型。实验结果表明,所提方法训练误差指标均优于基于BP和CFBP神经网络的方法;在GNSS失效1 min、2 min、5 min时,基于预测模型的预测平均绝对误差(MAE)、方差(VAR)和均方根误差(RMSE)分别为18.88 cm、19.29 cm、58.83 cm,8.96、8.45、5.68和20.90、21.06、59.10,随着GNSS信号失效时长的增加,定位预测精度降低。
参考文献 | 相关文章 | 多维度评价