联邦学习(FL)是一种在隐私保护和通信效率方面极具潜力的新型机器学习模型构建范式,然而现实物联网(IoT)场景中客户端节点数据之间会存在异构性,学习一个统一的全局模型会导致模型准确率下降。为了解决这一问题,提出一种基于特征分布的聚类联邦学习(CFLFD)算法。在该算法中,对每个客户端节点从模型提取的特征进行主成分分析(PCA)后所得到的结果进行聚类,以将具有相似数据分布的客户端节点聚类在一起相互协作,从而提高模型准确率。为验证算法的有效性,在3个数据集和4种基准算法上进行大量实验。实验结果表明,与FedProx相比,CFLFD算法在CIFAR10数据集和Office-Caltech10数据集上将模型准确率分别提升了1.12和3.76个百分点。