摘 要: 模糊支持向量机(FSVM)对传统支持向量机(SVM)在对外围点和噪声数据敏感的缺陷做了重要改进。选取合适的聚类中心计算符合数据本身特征分布的隶属度,能使分类更加准确,提高测试精度。论文基于模糊支持向量机思想,提出一种新的模糊聚类模型—基于熵和蚁群聚类算法的模糊支持向量机(EAFSVM),为聚类中心和隶属度的计算提出了新方法。实验对比传统SVM和FSVM,结果表明EAFSVM测试精度较高,尤其对多类数据、大规模数据具有较好的分类能力。