Toggle navigation
首页
期刊介绍
期刊简介
历史沿革
收录情况
获奖情况
引用指标
编委会
期刊在线
文章推荐
过刊浏览
专辑专刊
下载排行
阅读排行
投稿指南
组稿方向
投稿须知
论文模板
常见问题
署名变更申请
单位变更申请
版权转让协议
中图分类号
引言书写要求
参考文献著录格式
插图与表格规范
英文摘要书写要求
收费标准
学术诚信
联系我们
编辑部联系方式
位置示意图
期刊订阅办法
广告合作
English
期刊
出版年
关键词
结果中检索
(((陈跃国[Author]) AND 1[Journal]) AND year[Order])
AND
OR
NOT
文题
作者
作者单位
关键词
摘要
分类号
DOI
Please wait a minute...
选择:
导出引用
EndNote
Ris
BibTeX
显示/隐藏图片
Select
1.
面向多核CPU和GPU平台的数据库星形连接优化
刘专, 韩瑞琛, 张延松, 陈跃国, 张宇
计算机应用 2021, 41 (
3
): 611-617. DOI:
10.11772/j.issn.1001-9081.2020091430
摘要
(
706
)
PDF
(1026KB)(
984
)
可视化
收藏
针对联机分析处理(OLAP)中事实表与多个维表之间的星形连接执行代价较高的问题,提出了一种在先进的多核中央处理器(CPU)和图形处理器(GPU)上的星形连接优化方法。首先,对于多核CPU和GPU平台的星形连接中的物化代价问题,提出了基于向量索引的CPU和GPU平台上的向量化星形连接算法;然后,通过面向CPU cache和GPU shared memory大小的向量划分来提出基于向量粒度的星形连接操作,从而优化星形连接中向量索引的物化代价;最后,提出了基于压缩向量的星形连接算法,将定长向量索引压缩为变长的二元向量索引,从而在低选择率时提高cache内向量索引的存储访问效率。实验结果表明,在CPU平台上向量化星形连接算法相对于常规的行式或列式连接性能提升了40%以上,在GPU平台上向量化星形连接算法相对于常规星形连接算法性能提升超过了15%;与当前主流的内存数据库和GPU数据库相比,优化的星形连接算法性能相对于最优内存数据库Hyper性能提升了130%,相对于最优的GPU数据库OmniSci性能提升了80%。可见基于向量索引的向量化星形连接优化技术有效地提高了多表连接性能,与传统优化技术相比,基于向量索引的向量化处理提高了较小cache上的数据存储访问效率,压缩向量进一步提升了向量索引在cache内的访问效率。
参考文献
|
相关文章
|
多维度评价
Select
2.
大数据分析的应用案例——投资模型的稳健性
覃雄派, 陈跃国, 王邦国
计算机应用 2017, 37 (
3
): 660-667. DOI:
10.11772/j.issn.1001-9081.2017.03.660
摘要
(
613
)
PDF
(1417KB)(
573
)
可视化
收藏
交易模型的稳健性,指的是该模型的利润率曲线的波动性较小,没有大起大落。针对一个基于支持向量回归(SVR)技术的算法交易模型的稳健性问题,提出了使用若干导出指标训练统一的交易模型的策略,以及投资组合多样化的方法。首先,介绍基于支持向量回归技术的算法交易模型;然后,基于常用指标,构造了若干导出指标,用于股票价格的短期预测。这些指标,刻画了近期价格运动的典型模式、超买/超卖市场状态,以及背离市场状态。对这些指标进行了规范化,用于训练交易模型,使得模型可以泛化到不同的股票;最后,设计了投资组合多样化方法。在投资组合里,各个股票之间的相关性,有时会导致较大的投资损失;因为具有较强相关关系的股票,其价格朝相同方向变化。如果交易模型预测的价格走势不正确,引起止损操作,那么这些具有较强相关关系的股票,将引发雪崩式的止损,于是导致损失加剧。把股票根据相似性聚类到不同类别,通过从不同聚类类别中选择若干股票来构成多样化的投资组合,其中,股票的相似性,通过交易模型在不同股票上近期的利润曲线的相似度进行计算。在900只股票10年的价格大数据上进行了实验,实验结果显示,交易模型能够获得超过定期存款的超额利润率,年化利润率为8.06%。交易模型的最大回撤由13.23%降为5.32%,夏普指数由81.23%提高到88.79%,交易模型的利润率曲线波动性降低,说明交易模型的稳健性获得了提高。
参考文献
|
相关文章
|
多维度评价