期刊
  出版年
  关键词
结果中检索 Open Search
Please wait a minute...
选择: 显示/隐藏图片
1. 基于增量学习的RocksDB键值系统主动缓存机制
骆克云, 叶保留, 唐斌, 梅峰, 卢文达
《计算机应用》唯一官方网站    2020, 40 (2): 321-327.   DOI: 10.11772/j.issn.1001-9081.2019091616
摘要472)   HTML2)    PDF (723KB)(436)    收藏

由于分层结构的约束,基于日志结构合并(LSM)树的RocksDB键值存储系统面临着读取性能低下的问题。一种有效的解决方法是对热点数据进行主动缓存,但其面临两个挑战:一是如何在数据分布持续动态变化时对热点数据进行预测,二是如何将主动缓存机制与RocksDB存储结构衔接起来。针对这些挑战,基于预测分析技术,构建了由数据采集、系统交互、系统测试等部分组成的面向RocksDB键值系统的主动缓存框架,能够将热点数据缓存在LSM树的较低层级中;并对数据访问模式进行建模,设计并实现了基于增量学习的热点数据预测分析方法,能够有效减少存储介质的I/O访问次数。实验结果表明该机制能有效提升RocksDB在不同动态工作负载下的数据读取性能。

图表 | 参考文献 | 相关文章 | 多维度评价