2.
说话人确认中分数归一化的一种新方法
高新建 屈丹 李弼程
计算机应用
在说话人确认中,由于目标说话人和冒认者的得分分布是双峰分布,并且不同目标说话人模型得分分布不一致,使对所有说话人确定一个统一的阈值变得困难,导致系统性能下降。分数归一化通过调整冒认者的得分分布来调整阈值。简要介绍了目前最常用的两种归一化方法:零归一化(Z-Norm)和测试归一化(T-Norm)。重点引入了一种新的根据KL距离的D-Norm 归一化方法。然后结合Z-Norm 和D-Norm的优点,又提出一种新的方法ZD-Norm。对这四种归一化方法的性能进行了比较。实验表明,ZD-Norm相对Z-Norm和D-Norm,能够更有效地提高说话人确认系统的性能。
相关文章 |
多维度评价
|