文本正则化是语音合成(TTS)前端分析任务中不可或缺的步骤,而语义歧义性是文本正则化任务面临的主要问题,比如数字、日期、时间等非标准词的语义歧义性。针对该问题,提出一种基于编辑约束的端到端文本正则化方法,并且在充分考虑越南语的语言特点后,设计专门用于越南语的标注方法,以提高模型对上下文语义信息的建模能力。此外,针对神经网络模型容易产生不可恢复性错误的问题,提出一种编辑对齐算法以有效约束非标准词文本的范围,减小解码端的搜索空间,从而避免模型自身局限性所导致的非正则化文本预测错误。选取FastCorrect模型作为基准模型,将各类优化方法应用到基准模型中得到新模型。实验结果表明,所提模型在越南语不同优化方式的对比实验中的精准率相比使用无标注数据的基准模型提高了23.71个百分点,在同类中文实验中的精准率提高了26.24个百分点。可见,所提方法不仅在越南语上表现出色,而且在中文开源数据上也取得了显著的效果,验证了该方法在越南语之外的适用性。而且,与六类基线模型相比,使用所提方法的模型取得了最高的97.14%的精准率,在F1值上超过加权有限状态转换器(WFST)的两阶段方法2.29个百分点,证明了所提方法在文本正则化任务上的优越性。