针对标准人工蜂群(ABC)算法易陷入局部极值的问题,对标准ABC算法的轮盘赌选择机制进行了修改,提出了一种基于动态评价选择策略的改进人工蜂群(DSABC)算法。首先,根据到当前为止一定迭代次数内蜜源位置的连续更新或停滞次数,对每个蜜源位置进行动态评价;然后,利用所得的评价函数值为蜜源招募跟随蜂。在6个经典测试函数上的实验结果表明:与标准ABC算法相比,动态评价选择策略改进了标准ABC算法的选择机制,使得DSABC算法的求解精度有较大幅度提高,特别是对于两种不同维数的Rosenbrock函数,所得最优值的绝对误差分别由0.0017和0.0013减小到0.000049和0.000057;而且,DSABC算法克服了进化后期因群体位置多样性丢失较快而产生的早熟收敛现象,提高了整个种群的收敛精度及解的稳定性,从而为函数优化问题提供了一种高效可靠的求解方法。
限制速度粒子群优化(RVPSO)和自适应速度粒子群优化(SAVPSO)是近年来提出的专门求解约束优化问题(COP)的粒子群优化算法,但目前尚无两算法在无约束优化应用方面的研究。为此,研究上述算法在无约束优化中的有效性和性能特点,并针对算法保守性较强的特点,分别引入混沌因子和随机优化策略对算法进行改进,从而提高算法的全局搜索能力;另外,还研究了不同参数设置对算法性能的影响。在5个典型测试函数上的仿真实验结果表明:RVPSO改进算法的鲁棒性及全局搜索能力优于原算法,但在求解高维多峰函数时仍易于陷入局部最优; SAVPSO改进算法的全局搜索能力比RVPSO改进算法强,且在求解高维多峰函数时具有更快的收敛速度并能取得精度更高的解,表现出较好的全局优化能力,是一种切实有效的求解无约束优化问题的算法。