Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (4): 1121-1127.DOI: 10.11772/j.issn.1001-9081.2023050613
Special Issue: 数据科学与技术
• Data science and technology • Previous Articles Next Articles
Jie GUO1, Jiayu LIN2(
), Zuhong LIANG1,3, Xiaobo LUO1, Haitao SUN1
Received:2023-05-22
Revised:2023-07-07
Accepted:2023-07-14
Online:2023-08-01
Published:2024-04-10
Contact:
Jiayu LIN
About author:GUO Jie, born in 1998, M. S. candidate. Her research interests include recommendation system, data mining.Supported by:
郭洁1, 林佳瑜2(
), 梁祖红1,3, 罗孝波1, 孙海涛1
通讯作者:
林佳瑜
作者简介:郭洁(1998—),女,湖南常德人,硕士研究生,CCF会员,主要研究方向:推荐系统、数据挖掘基金资助:CLC Number:
Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning[J]. Journal of Computer Applications, 2024, 44(4): 1121-1127.
郭洁, 林佳瑜, 梁祖红, 罗孝波, 孙海涛. 基于知识感知和跨层次对比学习的推荐方法[J]. 《计算机应用》唯一官方网站, 2024, 44(4): 1121-1127.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023050613
| 数据集 | 用户数 | 物品数 | 交互数 | 稀疏率/% | 实体数 | 关系数 | 三元组数 |
|---|---|---|---|---|---|---|---|
| DBbook2014 | 5 576 | 2 680 | 65 961 | 99.60 | 13 882 | 13 | 34 511 |
| MovieLens-1m | 6 040 | 3 240 | 998 539 | 94.90 | 14 708 | 20 | 434 189 |
Tab. 1 Datasets used for experiment
| 数据集 | 用户数 | 物品数 | 交互数 | 稀疏率/% | 实体数 | 关系数 | 三元组数 |
|---|---|---|---|---|---|---|---|
| DBbook2014 | 5 576 | 2 680 | 65 961 | 99.60 | 13 882 | 13 | 34 511 |
| MovieLens-1m | 6 040 | 3 240 | 998 539 | 94.90 | 14 708 | 20 | 434 189 |
| 超参数名称 | 值 | 超参数名称 | 值 |
|---|---|---|---|
| 用户、项目嵌入维度 | 64 | 学习率 | 0.001 |
| 实体、关系嵌入维度 | 64 | 批处理大小 | 13 882 |
| 优化器 | Adam | L2正则化系数 | 0.001 |
Tab. 2 Hyperparameters setting of KCCL
| 超参数名称 | 值 | 超参数名称 | 值 |
|---|---|---|---|
| 用户、项目嵌入维度 | 64 | 学习率 | 0.001 |
| 实体、关系嵌入维度 | 64 | 批处理大小 | 13 882 |
| 优化器 | Adam | L2正则化系数 | 0.001 |
| 模型 | DBbook2014 | MovieLens-1m | ||
|---|---|---|---|---|
| Recall@10 | NDCG@10 | Recall@10 | NDCG@10 | |
| BPR | 0.160 2 | 0.113 1 | 0.128 8 | 0.334 6 |
| LightGCN | 0.204 6 | 0.144 6 | 0.137 2 | 0.340 8 |
| CKE | 0.163 3 | 0.112 3 | 0.132 1 | 0.326 1 |
| RippleNet | 0.092 9 | 0.059 5 | 0.086 5 | 0.240 8 |
| KGCN | 0.144 0 | 0.096 2 | 0.126 5 | 0.318 6 |
| KGAT | 0.188 0 | 0.119 8 | 0.132 1 | 0.322 4 |
| KGIN | 0.196 7 | 0.132 0 | ||
| CG-KGR | 0.130 5 | 0.319 7 | ||
| KCCL | 0.220 9 | 0.153 8 | 0.151 9 | 0.357 9 |
Tab. 3 Experimental results of different models
| 模型 | DBbook2014 | MovieLens-1m | ||
|---|---|---|---|---|
| Recall@10 | NDCG@10 | Recall@10 | NDCG@10 | |
| BPR | 0.160 2 | 0.113 1 | 0.128 8 | 0.334 6 |
| LightGCN | 0.204 6 | 0.144 6 | 0.137 2 | 0.340 8 |
| CKE | 0.163 3 | 0.112 3 | 0.132 1 | 0.326 1 |
| RippleNet | 0.092 9 | 0.059 5 | 0.086 5 | 0.240 8 |
| KGCN | 0.144 0 | 0.096 2 | 0.126 5 | 0.318 6 |
| KGAT | 0.188 0 | 0.119 8 | 0.132 1 | 0.322 4 |
| KGIN | 0.196 7 | 0.132 0 | ||
| CG-KGR | 0.130 5 | 0.319 7 | ||
| KCCL | 0.220 9 | 0.153 8 | 0.151 9 | 0.357 9 |
| 模型 | DBbook2014 | MovieLens-1m | ||
|---|---|---|---|---|
| Recall@10 | NDCG@10 | Recall@10 | NDCG@10 | |
| KCCL | 0.220 9 | 0.153 8 | 0.151 9 | 0.357 9 |
| KCCL-CL | 0.218 0 | 0.147 0 | 0.143 6 | 0.351 8 |
| KCCL-N | 0.218 5 | 0.147 7 | 0.144 1 | 0.352 0 |
Tab. 4 Results of ablation experiments
| 模型 | DBbook2014 | MovieLens-1m | ||
|---|---|---|---|---|
| Recall@10 | NDCG@10 | Recall@10 | NDCG@10 | |
| KCCL | 0.220 9 | 0.153 8 | 0.151 9 | 0.357 9 |
| KCCL-CL | 0.218 0 | 0.147 0 | 0.143 6 | 0.351 8 |
| KCCL-N | 0.218 5 | 0.147 7 | 0.144 1 | 0.352 0 |
| DBbook2014 | MovieLens-1m | |||
|---|---|---|---|---|
| Recall@10 | NDCG@10 | Recall@10 | NDCG@10 | |
| 1×10-1 | 0.193 8 | 0.143 9 | 0.146 5 | 0.325 7 |
| 1×10-2 | 0.220 9 | 0.153 8 | 0.151 9 | 0.357 9 |
| 1×10-3 | 0.217 8 | 0.149 3 | 0.145 7 | 0.351 8 |
| 1×10-4 | 0.212 0 | 0.142 4 | 0.143 4 | 0.351 8 |
Tab. 5 Impact of parameter λ1 on Recall and NDCG
| DBbook2014 | MovieLens-1m | |||
|---|---|---|---|---|
| Recall@10 | NDCG@10 | Recall@10 | NDCG@10 | |
| 1×10-1 | 0.193 8 | 0.143 9 | 0.146 5 | 0.325 7 |
| 1×10-2 | 0.220 9 | 0.153 8 | 0.151 9 | 0.357 9 |
| 1×10-3 | 0.217 8 | 0.149 3 | 0.145 7 | 0.351 8 |
| 1×10-4 | 0.212 0 | 0.142 4 | 0.143 4 | 0.351 8 |
| DBbook2014 | MovieLens-1m | |||
|---|---|---|---|---|
| Recall@10 | NDCG@10 | Recall@10 | NDCG@10 | |
| 0.1 | 0.218 3 | 0.147 5 | 0.150 9 | 0.352 5 |
| 0.2 | 0.220 9 | 0.153 8 | 0.151 9 | 0.357 9 |
| 0.3 | 0.219 9 | 0.151 8 | 0.148 5 | 0.352 9 |
| 0.4 | 0.218 7 | 0.151 6 | 0.144 7 | 0.350 0 |
| 0.5 | 0.217 6 | 0.149 7 | 0.143 5 | 0.348 9 |
Tab. 6 Impact of parameter τ on Recall and NDCG
| DBbook2014 | MovieLens-1m | |||
|---|---|---|---|---|
| Recall@10 | NDCG@10 | Recall@10 | NDCG@10 | |
| 0.1 | 0.218 3 | 0.147 5 | 0.150 9 | 0.352 5 |
| 0.2 | 0.220 9 | 0.153 8 | 0.151 9 | 0.357 9 |
| 0.3 | 0.219 9 | 0.151 8 | 0.148 5 | 0.352 9 |
| 0.4 | 0.218 7 | 0.151 6 | 0.144 7 | 0.350 0 |
| 0.5 | 0.217 6 | 0.149 7 | 0.143 5 | 0.348 9 |
| DBbook2014 | MovieLens-1m | |||
|---|---|---|---|---|
| Recall@10 | NDCG@10 | Recall@10 | NDCG@10 | |
| 0.1 | 0.217 9 | 0.151 9 | 0.151 3 | 0.356 5 |
| 0.2 | 0.218 3 | 0.153 4 | 0.151 9 | 0.357 9 |
| 0.3 | 0.220 9 | 0.153 8 | 0.151 2 | 0.353 0 |
| 0.4 | 0.220 1 | 0.153 5 | 0.150 6 | 0.353 1 |
| 0.5 | 0.219 0 | 0.153 0 | 0.149 6 | 0.350 1 |
Tab. 7 Impact of parameter p on Recall and NDCG
| DBbook2014 | MovieLens-1m | |||
|---|---|---|---|---|
| Recall@10 | NDCG@10 | Recall@10 | NDCG@10 | |
| 0.1 | 0.217 9 | 0.151 9 | 0.151 3 | 0.356 5 |
| 0.2 | 0.218 3 | 0.153 4 | 0.151 9 | 0.357 9 |
| 0.3 | 0.220 9 | 0.153 8 | 0.151 2 | 0.353 0 |
| 0.4 | 0.220 1 | 0.153 5 | 0.150 6 | 0.353 1 |
| 0.5 | 0.219 0 | 0.153 0 | 0.149 6 | 0.350 1 |
| 模型 | 5%随机噪声 | 10%随机噪声 | ||
|---|---|---|---|---|
| Recall@10 | NDCG@10 | Recall@10 | NDCG@10 | |
| KGAT | 0.131 1 | 0.319 3 | 0.125 9 | 0.316 8 |
| KGIN | 0.148 7 | 0.342 1 | 0.144 8 | 0.340 2 |
| KCCL | 0.149 6 | 0.353 5 | 0.149 3 | 0.351 7 |
Tab. 8 Influence of noisy knowledge graph on Recall and NDCG
| 模型 | 5%随机噪声 | 10%随机噪声 | ||
|---|---|---|---|---|
| Recall@10 | NDCG@10 | Recall@10 | NDCG@10 | |
| KGAT | 0.131 1 | 0.319 3 | 0.125 9 | 0.316 8 |
| KGIN | 0.148 7 | 0.342 1 | 0.144 8 | 0.340 2 |
| KCCL | 0.149 6 | 0.353 5 | 0.149 3 | 0.351 7 |
| 1 | WANG Z H, HOU D Z. Research on book recommendation algorithm based on collaborative filtering and interest degree [J]. Wireless Communications & Mobile Computing, 2021, 2021: 7036357. 10.1155/2021/7036357 |
| 2 | MUSTO C, TRATTNER C, STARKE A, et al. Towards a knowledge-aware food recommender system exploiting holistic user models [C]// Proceedings of the 28th ACM Conference on User Modeling, Adaptation and Personalization. New York: ACM, 2020:333-337. 10.1145/3340631.3394880 |
| 3 | DARBAN Z Z, VALIPOUR M H. GHRS: graph-based hybrid recommendation system with application to movie recommendation [J]. Expert Systems with Applications, 2022, 200: 116850. 10.1016/j.eswa.2022.116850 |
| 4 | HANSEN C, HANSEN C, MAYSTRE L, et al. Contextual and sequential user embeddings for large-scale music recommendation [C]// Proceedings of the 14th ACM Conference on Recommender Systems. New York: ACM, 2020:53-62. 10.1145/3383313.3412248 |
| 5 | YU J, GAO M, LI J, et al. Adaptive implicit friends identification over heterogeneous network for social recommendation [C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York : ACM, 2018:357-366. 10.1145/3269206.3271725 |
| 6 | LIU D, LI J, DU B, et al. DAML: dual attention mutual learning between ratings and reviews for item recommendation [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019:344-352. 10.1145/3292500.3330906 |
| 7 | WANG H, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems [C]// Proceedings of the 28th World Wide Web Conference. New York: ACM, 2019:3307-3313. 10.1145/3308558.3313417 |
| 8 | WANG H, ZHANG F, ZHANG M, et al. Knowledge-aware graph neural networks with label smoothness regularization for recommender systems [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019:968-977. 10.1145/3292500.3330836 |
| 9 | WANG X, HE X, CAO Y, et al. KGAT:knowledge graph attention network for recommendation [C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019:950-958. 10.1145/3292500.3330989 |
| 10 | WANG X, HUANG T, WANG D, et al. Learning intents behind interactions with knowledge graph for recommendation [C]// Proceedings of the 2021 Word Wide Web Conference. New York: ACM, 2021:878-887. 10.1145/3442381.3450133 |
| 11 | CHEN Y, YANG Y, WANG Y, et al. Attentive knowledge-aware graph convolutional networks with collaborative guidance for personalized recommendation[C]// Proceedings of the 2022 IEEE 38th International Conference on Data Engineering. Piscataway: IEEE, 2022:299-311. 10.1109/icde53745.2022.00027 |
| 12 | WU J, WANG X, FENG F, et al. Self-supervised graph learning for recommendation [C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021:726-735. 10.1145/3404835.3462862 |
| 13 | YU J, YIN H, XIA X, et al. Are graph augmentations necessary? simple graph contrastive learning for recommendation [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022:1294-1303. 10.1145/3477495.3531937 |
| 14 | 田萱, 陈杭雪. 推荐任务中知识图谱嵌入应用研究综述 [J]. 计算机科学与探索, 2022, 16(8): 1681-1705. 10.3778/j.issn.1673-9418.2112070 |
| TIAN X, CHEN H X. Survey on applications of knowledge graph embedding in recommendation tasks [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(8): 1681-1705. 10.3778/j.issn.1673-9418.2112070 | |
| 15 | GUO Q, ZHUANG F, QIN C, et al. A survey on knowledge graph-based recommender systems [J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 34(8): 3549-3568. |
| 16 | HUANG C, WANG X, HE X, et al. Self-supervised learning for recommender system [C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022:3440-3443. 10.1145/3477495.3532684 |
| 17 | VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks [EB/OL]. (2018-02-04) [2021-03-20]. . |
| 18 | CHEN J, DONG H, WANG X, et al. Bias and debias in recommender system: a survey and future directions [J]. ACM Transactions on Information Systems, 2023, 41(3): No. 67. 10.1145/3564284 |
| 19 | CHEN T, KORNBLITH S, NOROUZI M, et al. A simple framework for contrastive learning of visual representations [C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020:1597-1607. |
| 20 | CAO Y, WANG X, HE X, et al. Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences [C]// Proceedings of the 2019 World Wide Web Conference. New York: ACM, 2019:151-161. 10.1145/3308558.3313705 |
| 21 | LEHMANN J, ISELE R, JAKOB M, et al. Dbpedia — a large-scale, multilingual knowledge base extracted from Wikipedia [J]. Semantic Web, 2015, 6(2): 167-195. 10.3233/sw-140134 |
| 22 | ZHAO W X, MU S, HOU Y, et al. RecBole: towards a unified, comprehensive and efficient framework for recommendation algorithms [C]// Proceedings of the 30th ACM International Conference on Information & Knowledge Management. New York: ACM, 2021:4653-4664. 10.1145/3459637.3482016 |
| 23 | RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback [C]// Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. New York: ACM, 2009:452-461. |
| 24 | HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation [C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020:639-648. 10.1145/3397271.3401063 |
| 25 | ZHANG F, YUAN N J, LIAN D, et al. Collaborative knowledge base embedding for recommender systems [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016:353-362. 10.1145/2939672.2939673 |
| 26 | WANG H, ZHANG F, WANG J, et al. RippleNet:propagating user preferences on the knowledge graph for recommender systems [C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018:417-426. 10.1145/3269206.3271739 |
| [1] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
| [2] | Xingyao YANG, Yu CHEN, Jiong YU, Zulian ZHANG, Jiaying CHEN, Dongxiao WANG. Recommendation model combining self-features and contrastive learning [J]. Journal of Computer Applications, 2024, 44(9): 2704-2710. |
| [3] | Song XU, Wenbo ZHANG, Yifan WANG. Lightweight video salient object detection network based on spatiotemporal information [J]. Journal of Computer Applications, 2024, 44(7): 2192-2199. |
| [4] | Xiaoxia JIANG, Ruizhang HUANG, Ruina BAI, Lina REN, Yanping CHEN. Deep event clustering method based on event representation and contrastive learning [J]. Journal of Computer Applications, 2024, 44(6): 1734-1742. |
| [5] | Jianjing LI, Guanfeng LI, Feizhou QIN, Weijun LI. Multi-relation approximate reasoning model based on uncertain knowledge graph embedding [J]. Journal of Computer Applications, 2024, 44(6): 1751-1759. |
| [6] | Xinrui LIN, Xiaofei WANG, Yan ZHU. Academic anomaly citation group detection based on local extended community detection [J]. Journal of Computer Applications, 2024, 44(6): 1855-1861. |
| [7] | Jiong WANG, Taotao TANG, Caiyan JIA. PAGCL: positive augmentation graph contrastive learning recommendation method without negative sampling [J]. Journal of Computer Applications, 2024, 44(5): 1485-1492. |
| [8] | Dapeng XU, Xinmin HOU. Feature selection method for graph neural network based on network architecture design [J]. Journal of Computer Applications, 2024, 44(3): 663-670. |
| [9] | Andi GUO, Zhen JIA, Tianrui LI. High-precision entity and relation extraction in medical domain based on pseudo-entity data augmentation [J]. Journal of Computer Applications, 2024, 44(2): 393-402. |
| [10] | Weichao DANG, Lei ZHANG, Gaimei GAO, Chunxia LIU. Weakly supervised action localization method with snippet contrastive learning [J]. Journal of Computer Applications, 2024, 44(2): 548-555. |
| [11] | Yifei SONG, Yi LIU. Fast adversarial training method based on data augmentation and label noise [J]. Journal of Computer Applications, 2024, 44(12): 3798-3807. |
| [12] | Xinrong HU, Jingxue CHEN, Zijian HUANG, Bangchao WANG, Xun YAO, Junping LIU, Qiang ZHU, Jie YANG. Graph convolution network-based masked data augmentation [J]. Journal of Computer Applications, 2024, 44(11): 3335-3344. |
| [13] | Xingyao YANG, Hongtao SHEN, Zulian ZHANG, Jiong YU, Jiaying CHEN, Dongxiao WANG. Sequential recommendation based on hierarchical filter and temporal convolution enhanced self-attention network [J]. Journal of Computer Applications, 2024, 44(10): 3090-3096. |
| [14] | Beijing ZHOU, Hairong WANG, Yimeng WANG, Lisi ZHANG, He MA. Recommendation method using knowledge graph embedding propagation [J]. Journal of Computer Applications, 2024, 44(10): 3252-3259. |
| [15] | Yunhua ZHU, Bing KONG, Lihua ZHOU, Hongmei CHEN, Chongming BAO. Multi-view clustering network guided by graph contrastive learning [J]. Journal of Computer Applications, 2024, 44(10): 3267-3274. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||