Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (10): 3267-3274.DOI: 10.11772/j.issn.1001-9081.2023101481
• The 40th CCF National Database Conference (NDBC 2023) • Previous Articles Next Articles
Yunhua ZHU1, Bing KONG1(), Lihua ZHOU1, Hongmei CHEN1, Chongming BAO2
Received:
2023-10-30
Revised:
2023-12-07
Accepted:
2023-12-26
Online:
2024-10-15
Published:
2024-10-10
Contact:
Bing KONG
About author:
ZHU Yunhua, born in 1998, M. S. candidate. His research interests include data mining, multi-view clustering.Supported by:
通讯作者:
孔兵
作者简介:
朱云华(1998—),男,重庆人,硕士研究生,CCF会员,主要研究方向:数据挖掘、多视图聚类基金资助:
CLC Number:
Yunhua ZHU, Bing KONG, Lihua ZHOU, Hongmei CHEN, Chongming BAO. Multi-view clustering network guided by graph contrastive learning[J]. Journal of Computer Applications, 2024, 44(10): 3267-3274.
朱云华, 孔兵, 周丽华, 陈红梅, 包崇明. 图对比学习引导的多视图聚类网络[J]. 《计算机应用》唯一官方网站, 2024, 44(10): 3267-3274.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023101481
数据集 | 类型 | 视图数 | 节点数 | 类别 | 维度 |
---|---|---|---|---|---|
3sources | 文本 | 3 | 169 | 6 | 3 560,3 631,3 068 |
BBCSport | 文本 | 2 | 544 | 5 | 3 183,3 203 |
Caltech101-7 | 图像 | 6 | 1 474 | 7 | 48,40,254,1 984, 512,928 |
VOC | 图像 | 2 | 5 649 | 20 | 599,319 |
Caltech101-all | 图像 | 3 | 9 144 | 102 | 1 984,512,928 |
BDGP | 图像、文本 | 2 | 2 500 | 5 | 1 750,79 |
Tab. 1 Statistics of datasets
数据集 | 类型 | 视图数 | 节点数 | 类别 | 维度 |
---|---|---|---|---|---|
3sources | 文本 | 3 | 169 | 6 | 3 560,3 631,3 068 |
BBCSport | 文本 | 2 | 544 | 5 | 3 183,3 203 |
Caltech101-7 | 图像 | 6 | 1 474 | 7 | 48,40,254,1 984, 512,928 |
VOC | 图像 | 2 | 5 649 | 20 | 599,319 |
Caltech101-all | 图像 | 3 | 9 144 | 102 | 1 984,512,928 |
BDGP | 图像、文本 | 2 | 2 500 | 5 | 1 750,79 |
方法 | 3sources | BBCSport | Caltech101-7 | BDGP | VOC | Caltech101-all | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACC | NMI | ACC | NMI | ACC | NMI | ACC | NMI | ACC | NMI | ACC | NMI | |
LMSC | 73.00 | 68.30 | 90.51 | 83.24 | 57.12 | 51.43 | 47.24 | 29.73 | 49.28 | 43.61 | 20.60 | 33.30 |
RMSL | 58.90 | 54.07 | 97.60 | 91.70 | 63.96 | 47.42 | 81.06 | 72.64 | 47.70 | 44.80 | 24.58 | 33.73 |
SwMC | 38.46 | 19.01 | 36.21 | 11.55 | 66.35 | 57.00 | 94.96 | 88.50 | 37.63 | 33.75 | 28.09 | 34.93 |
GMC | 69.23 | 54.07 | 80.70 | 72.26 | 69.20 | 60.56 | 73.20 | 71.62 | 51.63 | 45.75 | 20.27 | 21.90 |
AE2-Nets | 51.27 | 40.10 | 55.20 | 40.60 | 66.46 | 60.60 | 55.20 | 40.60 | 57.12 | 57.11 | 22.45 | 31.22 |
SiMVC | 56.73 | 40.58 | 60.18 | 57.99 | 63.04 | 52.54 | 69.72 | 53.26 | 55.13 | 61.54 | 20.31 | 33.67 |
CONAN | 62.18 | 47.78 | 76.52 | 68.67 | 67.70 | 46.41 | 67.62 | 61.93 | 62.16 | 62.11 | 24.61 | 34.25 |
CoMVC | 67.34 | 52.91 | 75.11 | 69.05 | 71.92 | 56.49 | 80.68 | 67.39 | 61.86 | 67.48 | 19.68 | 39.29 |
CMGEC | 79.60 | 68.37 | 97.60 | 92.30 | 54.61 | 60.83 | 96.72 | 90.30 | 60.53 | 57.17 | 23.73 | 34.63 |
MGCCN | 72.13 | 65.76 | 94.15 | 88.41 | 74.13 | 57.90 | 88.08 | 87.92 | 67.10 | 61.26 | 26.22 | 37.64 |
MvAGC | 58.58 | 55.11 | 64.95 | 47.17 | 65.40 | 57.97 | 98.04 | 93.94 | 59.32 | 55.35 | 24.67 | 40.42 |
MCNGCL | 82.43 | 72.07 | 97.97 | 93.14 | 84.77 | 65.35 | 98.72 | 96.17 | 67.53 | 67.59 | 31.27 | 36.25 |
Tab. 2 Clustering results of different methods on six datasets
方法 | 3sources | BBCSport | Caltech101-7 | BDGP | VOC | Caltech101-all | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACC | NMI | ACC | NMI | ACC | NMI | ACC | NMI | ACC | NMI | ACC | NMI | |
LMSC | 73.00 | 68.30 | 90.51 | 83.24 | 57.12 | 51.43 | 47.24 | 29.73 | 49.28 | 43.61 | 20.60 | 33.30 |
RMSL | 58.90 | 54.07 | 97.60 | 91.70 | 63.96 | 47.42 | 81.06 | 72.64 | 47.70 | 44.80 | 24.58 | 33.73 |
SwMC | 38.46 | 19.01 | 36.21 | 11.55 | 66.35 | 57.00 | 94.96 | 88.50 | 37.63 | 33.75 | 28.09 | 34.93 |
GMC | 69.23 | 54.07 | 80.70 | 72.26 | 69.20 | 60.56 | 73.20 | 71.62 | 51.63 | 45.75 | 20.27 | 21.90 |
AE2-Nets | 51.27 | 40.10 | 55.20 | 40.60 | 66.46 | 60.60 | 55.20 | 40.60 | 57.12 | 57.11 | 22.45 | 31.22 |
SiMVC | 56.73 | 40.58 | 60.18 | 57.99 | 63.04 | 52.54 | 69.72 | 53.26 | 55.13 | 61.54 | 20.31 | 33.67 |
CONAN | 62.18 | 47.78 | 76.52 | 68.67 | 67.70 | 46.41 | 67.62 | 61.93 | 62.16 | 62.11 | 24.61 | 34.25 |
CoMVC | 67.34 | 52.91 | 75.11 | 69.05 | 71.92 | 56.49 | 80.68 | 67.39 | 61.86 | 67.48 | 19.68 | 39.29 |
CMGEC | 79.60 | 68.37 | 97.60 | 92.30 | 54.61 | 60.83 | 96.72 | 90.30 | 60.53 | 57.17 | 23.73 | 34.63 |
MGCCN | 72.13 | 65.76 | 94.15 | 88.41 | 74.13 | 57.90 | 88.08 | 87.92 | 67.10 | 61.26 | 26.22 | 37.64 |
MvAGC | 58.58 | 55.11 | 64.95 | 47.17 | 65.40 | 57.97 | 98.04 | 93.94 | 59.32 | 55.35 | 24.67 | 40.42 |
MCNGCL | 82.43 | 72.07 | 97.97 | 93.14 | 84.77 | 65.35 | 98.72 | 96.17 | 67.53 | 67.59 | 31.27 | 36.25 |
模型 | 3sources | BBCSport | Caltech101-7 | BDGP | VOC | Caltech101-all | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACC | NMI | ACC | NMI | ACC | NMI | ACC | NMI | ACC | NMI | ACC | NMI | |
CL-T | 58.11 | 51.03 | 87.32 | 86.88 | 76.72 | 51.42 | 96.88 | 92.32 | 50.50 | 52.39 | 10.59 | 16.60 |
CL-A | 73.85 | 62.80 | 88.38 | 84.61 | 80.12 | 63.29 | 97.16 | 93.51 | 51.41 | 52.90 | 21.68 | 23.71 |
CL-W | 79.05 | 68.30 | 90.99 | 80.78 | 80.29 | 53.91 | 97.44 | 94.93 | 57.04 | 56.83 | 24.73 | 26.99 |
CL-C | 81.43 | 71.45 | 94.76 | 88.69 | 82.07 | 60.55 | 98.22 | 95.49 | 61.76 | 60.54 | 27.75 | 30.41 |
CL | 82.43 | 72.07 | 97.97 | 93.14 | 84.77 | 65.35 | 98.72 | 96.17 | 67.53 | 67.59 | 31.27 | 36.25 |
Tab. 3 Results of ablation experiments
模型 | 3sources | BBCSport | Caltech101-7 | BDGP | VOC | Caltech101-all | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACC | NMI | ACC | NMI | ACC | NMI | ACC | NMI | ACC | NMI | ACC | NMI | |
CL-T | 58.11 | 51.03 | 87.32 | 86.88 | 76.72 | 51.42 | 96.88 | 92.32 | 50.50 | 52.39 | 10.59 | 16.60 |
CL-A | 73.85 | 62.80 | 88.38 | 84.61 | 80.12 | 63.29 | 97.16 | 93.51 | 51.41 | 52.90 | 21.68 | 23.71 |
CL-W | 79.05 | 68.30 | 90.99 | 80.78 | 80.29 | 53.91 | 97.44 | 94.93 | 57.04 | 56.83 | 24.73 | 26.99 |
CL-C | 81.43 | 71.45 | 94.76 | 88.69 | 82.07 | 60.55 | 98.22 | 95.49 | 61.76 | 60.54 | 27.75 | 30.41 |
CL | 82.43 | 72.07 | 97.97 | 93.14 | 84.77 | 65.35 | 98.72 | 96.17 | 67.53 | 67.59 | 31.27 | 36.25 |
1 | YANG Y, WANG H. Multi-view clustering: a survey [J]. Big Data Mining and Analytics, 2018, 1(2): 83-107. |
2 | 乔宇鑫, 葛洪伟, 宋鹏. 全局与局部结构学习的多视图子空间聚类算法[J]. 计算机科学与探索, 2023, 17(9): 2107-2117. |
QIAO Y X, GE H W, SONG P. Global and local structure learning for multi-view subspace clustering [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(9): 2107-2117. | |
3 | NIE F, LI J, LI X. Self-weighted multiview clustering with multiple graphs[C]// Proceedings of the 26th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2017: 2564-2570. |
4 | YU S, TRANCHEVENT L, LIU X, et al. Optimized data fusion for kernel k-means clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(5): 1031-1039. |
5 | ZHANG C, LIU Y, FU H. AE2-Nets: autoencoder in autoencoder networks[C]// Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 2572-2580. |
6 | LIN Y, GOU Y, LIU Z, et al. COMPLETER: incomplete multi-view clustering via contrastive prediction[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 11169-11178. |
7 | KE G, HONG Z, ZENG Z, et al. CONAN: contrastive fusion networks for multi-view clustering[C]// Proceedings of the 2021 IEEE International Conference on Big Data. Piscataway: IEEE, 2021: 653-660. |
8 | FAN S, WANG X, SHI C, et al. One2Multi graph autoencoder for multi-view graph clustering[C]// Proceedings of the Web Conference 2020. New York: ACM, 2020: 3070-3076. |
9 | WANG Y, CHANG D, FU Z, et al. Consistent multiple graph embedding for multi-view clustering[J]. IEEE Transactions on Multimedia, 2023, 25: 1008-1018. |
10 | 杜国王, 周丽华, 王丽珍, 等. 基于两级权重的多视角聚类[J]. 计算机研究与发展, 2022, 59(4): 907-921. |
DU G W, ZHOU L H, WANG L Z, et al. Multi-view clustering based on two-level weights [J]. Journal of Computer Research and Development, 2022, 59(4): 907-921. | |
11 | 谢胜利, 陈泓达, 高军礼, 等. 基于分布对齐变分自编码器的深度多视图聚类[J]. 计算机学报, 2023, 46(5): 945-959. |
XIE S L, CHEN H D, GAO J L, et al. Deep multi-view clustering based on distribution aligned variational autoencoder [J]. Chinese Journal of Computers, 2023, 46(5): 945-959. | |
12 | ABAVISANI M, PATEL V M. Deep multimodal subspace clustering networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(6): 1601-1614. |
13 | LI Z, WANG Q, TAO Z, et al. Deep adversarial multi-view clustering network[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI Press, 2019: 2952-2958. |
14 | XU J, REN Y, LI G, et al. Deep embedded multi-view clustering with collaborative training[J]. Information Sciences, 2021, 573: 279-290. |
15 | LIU L, KANG Z, RUAN J, et al. Multilayer graph contrastive clustering network[J]. Information Sciences, 2022, 613: 256-267. |
16 | KULATILLEKE G K, PORTMANN M, CHANDRA S S. SCGC: self-supervised contrastive graph clustering [EB/OL]. (2022-04-27)[2023-10-01]. . |
17 | VELIČKOVIĆ P, FEDUS W, HAMILTON W L, et al. Deep graph Infomax [EB/OL]. (2018-12-21)[2023-10-01]. . |
18 | XU D, CHENG W, LUO D, et al. InfoGCL: information-aware graph contrastive learning[C]// Proceedings of the 35th International Conference on Neural Information Processing Systems. [S.l.]: Neural Information Processing Systems Foundation, 2021: 30414-30425. |
19 | JING B, PARK C, TONG H. HDMI: high-order deep multiplex Infomax[C]// Proceedings of the Web Conference 2021. New York: ACM, 2021: 2414-2424. |
20 | ZHU Y, XU Y, YU F, et al. Deep graph contrastive representation learning [EB/OL]. (2020-07-13)[2023-10-01]. . |
21 | XU J, TANG H, REN Y, et al. Multi-level feature learning for contrastive multi-view clustering[C]// Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 16030-16039. |
22 | PAN E, KANG Z. Multi-view contrastive graph clustering[C]//Proceedings of the 35th International Conference on Neural Information Processing Systems. New York: ACM, 2024: 2148-2159. |
23 | XIE J, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis[C]// Proceedings of the 33rd International Conference on Machine Learning. New York: JMLR.org, 2016: 478-487. |
24 | TU W, ZHOU S, LIU X, et al. Deep fusion clustering network[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. Menlo Park: AAAI Press, 2021: 9978-9987. |
25 | ZHANG C, HU Q, FU H, et al. Latent multi-view subspace clustering[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4333-4341. |
26 | MI Y, DAI J, REN Z, et al. One-stage multi-view clustering with hierarchical attributes extraction[J]. Cognitive Computation, 2023, 15: 552-564. |
27 | XU J, REN Y, TANG H, et al. Self-supervised discriminative feature learning for deep multi-view clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(7): 7470-7482. |
28 | LI R, ZHANG C, FU H, et al. Reciprocal multi-layer subspace learning for multi-view clustering[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 8171-8179. |
29 | WANG H, YANG Y, LIU B. GMC: graph-based multi-view clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 32(6): 1116-1129. |
30 | TROSTEN D J, LØKSE S, JENSSEN R, et al. Reconsidering representation alignment for multi-view clustering[C]// Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 1255-1265. |
31 | LIN Z, KANG Z, ZHANG L, et al. Multi-view attributed graph clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(2): 1872-1880. |
32 | VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605. |
[1] | Yunchuan HUANG, Yongquan JIANG, Juntao HUANG, Yan YANG. Molecular toxicity prediction based on meta graph isomorphism network [J]. Journal of Computer Applications, 2024, 44(9): 2964-2969. |
[2] | Yexin PAN, Zhe YANG. Optimization model for small object detection based on multi-level feature bidirectional fusion [J]. Journal of Computer Applications, 2024, 44(9): 2871-2877. |
[3] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[4] | Xiyuan WANG, Zhancheng ZHANG, Shaokang XU, Baocheng ZHANG, Xiaoqing LUO, Fuyuan HU. Unsupervised cross-domain transfer network for 3D/2D registration in surgical navigation [J]. Journal of Computer Applications, 2024, 44(9): 2911-2918. |
[5] | Xingyao YANG, Yu CHEN, Jiong YU, Zulian ZHANG, Jiaying CHEN, Dongxiao WANG. Recommendation model combining self-features and contrastive learning [J]. Journal of Computer Applications, 2024, 44(9): 2704-2710. |
[6] | Shunyong LI, Shiyi LI, Rui XU, Xingwang ZHAO. Incomplete multi-view clustering algorithm based on self-attention fusion [J]. Journal of Computer Applications, 2024, 44(9): 2696-2703. |
[7] | Yu DU, Yan ZHU. Constructing pre-trained dynamic graph neural network to predict disappearance of academic cooperation behavior [J]. Journal of Computer Applications, 2024, 44(9): 2726-2731. |
[8] | Tingjie TANG, Jiajin HUANG, Jin QIN, Hui LU. Session-based recommendation based on graph co-occurrence enhanced multi-layer perceptron [J]. Journal of Computer Applications, 2024, 44(8): 2357-2364. |
[9] | Yuhan LIU, Genlin JI, Hongping ZHANG. Video pedestrian anomaly detection method based on skeleton graph and mixed attention [J]. Journal of Computer Applications, 2024, 44(8): 2551-2557. |
[10] | Yanjie GU, Yingjun ZHANG, Xiaoqian LIU, Wei ZHOU, Wei SUN. Traffic flow forecasting via spatial-temporal multi-graph fusion [J]. Journal of Computer Applications, 2024, 44(8): 2618-2625. |
[11] | Qianhong SHI, Yan YANG, Yongquan JIANG, Xiaocao OUYANG, Wubo FAN, Qiang CHEN, Tao JIANG, Yuan LI. Multi-granularity abrupt change fitting network for air quality prediction [J]. Journal of Computer Applications, 2024, 44(8): 2643-2650. |
[12] | Zheng WU, Zhiyou CHENG, Zhentian WANG, Chuanjian WANG, Sheng WANG, Hui XU. Deep learning-based classification of head movement amplitude during patient anaesthesia resuscitation [J]. Journal of Computer Applications, 2024, 44(7): 2258-2263. |
[13] | Huanhuan LI, Tianqiang HUANG, Xuemei DING, Haifeng LUO, Liqing HUANG. Public traffic demand prediction based on multi-scale spatial-temporal graph convolutional network [J]. Journal of Computer Applications, 2024, 44(7): 2065-2072. |
[14] | Zhi ZHANG, Xin LI, Naifu YE, Kaixi HU. DKP: defending against model stealing attacks based on dark knowledge protection [J]. Journal of Computer Applications, 2024, 44(7): 2080-2086. |
[15] | Yiqun ZHAO, Zhiyu ZHANG, Xue DONG. Anisotropic travel time computation method based on dense residual connection physical information neural networks [J]. Journal of Computer Applications, 2024, 44(7): 2310-2318. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||